Research Article
BibTex RIS Cite

Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode

Year 2022, Volume: 26 Issue: 5, 1000 - 1009, 20.10.2022
https://doi.org/10.16984/saufenbilder.1129742

Abstract

In this study, polythiophene-graphene (PTh-G) composite thin film was prepared on the n-type silicon (n-Si) semiconductor wafer by the spin coating method. Subsequently, the current-voltage (I-V) measurements were made on the fabricated Au/PTh-G/n-Si/Al device to ascertain the impact of the PTh-G interfacial layer on the device performance. The main device parameters such as ideality factor (n), barrier height (b), series resistance (Rs) were calculated by using the thermionic emission (TE) and Norde functions, and then, the obtained results were discussed in detail. Additionally, the capacitance-voltage (C-V) characteristic of the device was examined as a function of the frequency, and the device parameters such as diffusion potential (Vd), Fermi energy level (Ef), carrier concentration (Nd), b were detemined. Finally, the light intensity-dependent I-V measurements were taken to obtain information about the photoelectrical characteristics of the fabricated device. The obtained results have shown that the prepared composite material has a good potential to be used in optoelectronic applications such as photodiode, and photodetector.

Supporting Institution

Yok

Project Number

Yok

Thanks

The author would like to thank the NANOGRAFI Company (Turkey) for supplying graphene in this study.

References

  • [1] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed. Wiley, New York, 1981.
  • [2] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., Clarendon Press, Oxford, 1988.
  • [3] R. T. Tung, “Recent advances in Schottky barrier concepts,” Materials Science and Engineering R, vol. 35, pp. 1-138, 2001.
  • [4] Z. Çaldıran, “Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure,” Journal of Alloy and Compound, vol. 865, pp. 158856, 2021.
  • [5] E. Daş, “Electrical and photoelectrical properties of Schottky diode construction with three-dimensional (3D) graphene aerogel interlayer,” Optical Materials, vol. 121, pp. 111633, 2021.
  • [6] E. Daş, “Green synthesis of reduced graphene oxide and device fabrication for optoelectronic applications,” Erzincan University Journal of Science and Technology, vol. 14, pp. 524-541, 2021.
  • [7] S. Mahato, “Composition analysis of two different PEDOT:PSS commercial products used as an interface layer in Au/n-Si Schottky diode,” RSC Advances, vol. 7, pp. 47125, 2017.
  • [8] S.Ying, Z. Ma, Z. Zhou, R. Tao, K.Yan, M. Xin, Y. Li, L. Pan, A. Y. Shi, “Device based on polymer Schottky junctions and their applications: A review,” IEEE Acces, vol. 8, pp. 189646-189660, 2020.
  • [9] F. Vatansever, J. Hacaloglu, U. Akbulut, L. Toppare, “A conducting composite of polythiophene: synthesis and characterization,” Polymer International, vol. 41, pp. 237-244, 1996.
  • [10] K. R. Nemade and S. A. Waghuley, “Synthesis, characterization and thermal properties of polythiophene composites,” Asian Journal of Chemistry, vol. 24, pp. 5947-5948, 2012.
  • [11] S. Sivrikaya, A. Dalmaz, S. Durmuş, “Synthesis of nano poly(2-thiophenecarboxaldehyde) and characterization of structure,” Sakarya University Journal of Science, vol. 22, pp. 1571-1575, 2018.
  • [12] C. Zanardi, F. Terzi, R. Seeber, “Polythiophenes and polythiophene-based composites in amperometric sensing,” Analytical and Bioanalytical Chemistry, vol. 405, pp. 509-531, 2013.
  • [13] H. S. Wang, L. H. Lin, S. Y. Chen, Y. L. Wang, K. H. Wei, “Ordered polythiophene/fullerene composite core-shell nanorod arrays for solar cell applications,” Nanotechnology, vol. 20, pp. 075201, 2009.
  • [14] M. R. Karim, C. J. Lee, M. S. Lee, “Synthesis and characterization of conducting polythiophene/carbon nanotubes composites,” Journal of Polymer Science (Part A) Polymer Chemistry, vol. 44, pp. 5283-5290, 2006. [15] S. G. Bachhav and D. R. Patil, “Preparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature,” Journal of Nanostructures, vol. 7, pp. 247-257, 2017.
  • [16] Z. Çaldıran, “Fabrication of Schottky barrier diodes with the lithium fluoride interface layer and electrical characterization in a wide temperature range,” Journal of Alloy and Compounds, vol. 816, pp. 152601, 2020.
  • [17] J. P. Melo, E. N. Schulz, C. M. Verdejo, S. L. Horswell, M. B. Camarada, “Synthesis and Characterization of Graphene/Polythiophene (GR/PT) Nanocomposites: Evaluation as High-Performance Supercapacitor Electrodes,” International Journal of Electrochemical Science, vol. 12, pp. 2933-2948, 2017.
  • [18] R. Singh, D. N. Srivastava, R. A. Singh, “Schottky diodes based on some semiconducting polymers,” Synthetic Metals, vol. 121, pp. 1439-1440, 2001.
  • [19] R. K. Gupta and R. A. Singh, “Schottky diode based on composite organic semiconductors,” Material Science in Semiconductor Processing, vol. 7, pp. 83-87, 2004.
  • [20] R. K. Gupta, K. Ghosh, P. K. Kahol, “Fabrication and electrical characterization of Au/p-Si/STO/Au contact,” Current Applied Physics, vol. 9, pp. 933-936, 2009.
  • [21] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 50, pp. 5052-5053, 1979.
  • [22] S. A. Yerişkin, M. Balbaşı, İ. Orak, “Frequency dependent electrical characteristics and origin of anomalous capacitance-voltage (C-V) peak in Au/(graphene-doped PVA)/n-Si capacitors,” Journal of Materials Science: Materials in Electronics, vol. 28, pp. 7819-7826, 2017.
  • [23] A. Chelkowski, “Dielektrik Physics,” Elsevier, Amsterdam, pp. 97-105, 1980.
  • [24] S. Demirezen, İ. Orak, Y. Azizian-Kalandaragh, Ş.Altındal, “Series resistance and interface states effects on the C-V and G/w-V characteristics in Au/(Co3O4-doped PVA)/n-Si structure at room temperature,” Journal of Materials Science: Materials in Electronics, vol. 28, pp. 1296-12976, 2017.
  • [25] A. Nikravan, Y. Badalı, Ş. Altındal, I. Uslu, İ. Orak, “On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage,” Journal of Electronic Materials, vol. 46, pp. 5728-5736, 2017.
  • [26] K. Chandra Sekhar Reddy, P. Sahatiya, I. Santos-Saucesa, O. Cortazar, R. Ramirez-Bon, “One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: Development of self-powered ultraviolet photodetector,” Applied Surface Science, vol. 513, pp. 145804, 2020.
  • [27] E. Daş, U. Incekara, Ş. Aydoğan, “A comparative study on electrical characteristics of Ni/n-Si and Ni/n-Pi Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature,” Optical Materials, vol. 119, pp. 111380, 2021.
  • [28] Ö. Sevgili and İ. Orak, “The investigation of current condition mechanism of Al/Y2O3/p-Si Schottky barrier diodes in wide range temperature and illuminate,” Microelectronics Reliability, vol. 117, pp. 114040, 2021.
  • [29] A. Koçyiğit, A. Sarılmaz, T. Öztürk, F. Özel, M.Yıldırım, “A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization,” Beilstein Journal of Nanotechnology, vol. 12, pp. 984-994, 2021.
  • [30] H. O. Doğan, Z. Orhan, F. Yıldırım, S. Aydoğan, “Self-powered photosensor based on curcumin:reduced graphene oxide (Cu:rGO)/n-Si heterojunction in visible and UV regions,” Journal of Alloys and Compounds, vol. 915, pp. 165428, 2022.
  • [31] M. Erdogan, Z. Orhan, E. Daş, “ Synthesis of electron-rich thiophene triphenylamine based organic materials for photodiode applications,” Optical Materials, vol. 128, pp. 112446, 2022.
  • [32] M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, “Electrical and photocurrent characteristics of Au/PVA(Co-doped)/n-Si photoconductive diodes,” Materials Science and Engineering B, vol. 177, pp. 416-420, 2012.
  • [33] S. Demirezen, Ş. Altındal, İ.Uslu, “Two diodes model and illumination effect on the forward and reverse bias I-V and C-V characteristic of Au/PVA (Bi-doped)/n-Si photodiode at room temperature,” Current Applied Physics, vol. 13, pp. 53-59, 2013. [34] T. Tunç, M. Gökçen, “Preparation and electrical characterization of Au/n-Si (110) structure with PVA-nickel acetate composite film interfacial layer,” Journal of Composite Materials, vol. 46, pp. 2843-2850, 2012.
  • [35] H. Kacus, M.Yılmaz, A. Koçyiğit, U. İncekara, Ş. Aydoğan, “ Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode,” Physica B: Condensed Matter, vol. 597, pp. 412408, 2020.
  • [36] A. G. Imer, E. Kaya, A. Dere, A. G. Al-Sehemi, A. A. Al-Ghamdi, A. Karabulut, F. Yakuphanoğlu, “Illumination impact on the electrical characteristics of Au/Sunset Yellow/n-Si/Au hybrid Schootky diode,” Journal of Materials Science:Materials in Electronics, vol. 31, pp. 14665-14673, 2020.
  • [37] M.Yılmaz, A. Koçyiğit, S. Aydoğan, U. İncekara, Y. Şahin, H. Kacus, “Influence of illumination intensity on electrical characteristics of Eosin y dye based hybrid photodiode:comparative study,” Applied Physics A, vol. 126, pp. 781, 2020.
Year 2022, Volume: 26 Issue: 5, 1000 - 1009, 20.10.2022
https://doi.org/10.16984/saufenbilder.1129742

Abstract

Project Number

Yok

References

  • [1] S. M. Sze, “Physics of Semiconductor Devices,” 2nd ed. Wiley, New York, 1981.
  • [2] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, 2nd ed., Clarendon Press, Oxford, 1988.
  • [3] R. T. Tung, “Recent advances in Schottky barrier concepts,” Materials Science and Engineering R, vol. 35, pp. 1-138, 2001.
  • [4] Z. Çaldıran, “Modification of Schottky barrier height using an inorganic compound interface layer for various contact metals in the metal/p-Si device structure,” Journal of Alloy and Compound, vol. 865, pp. 158856, 2021.
  • [5] E. Daş, “Electrical and photoelectrical properties of Schottky diode construction with three-dimensional (3D) graphene aerogel interlayer,” Optical Materials, vol. 121, pp. 111633, 2021.
  • [6] E. Daş, “Green synthesis of reduced graphene oxide and device fabrication for optoelectronic applications,” Erzincan University Journal of Science and Technology, vol. 14, pp. 524-541, 2021.
  • [7] S. Mahato, “Composition analysis of two different PEDOT:PSS commercial products used as an interface layer in Au/n-Si Schottky diode,” RSC Advances, vol. 7, pp. 47125, 2017.
  • [8] S.Ying, Z. Ma, Z. Zhou, R. Tao, K.Yan, M. Xin, Y. Li, L. Pan, A. Y. Shi, “Device based on polymer Schottky junctions and their applications: A review,” IEEE Acces, vol. 8, pp. 189646-189660, 2020.
  • [9] F. Vatansever, J. Hacaloglu, U. Akbulut, L. Toppare, “A conducting composite of polythiophene: synthesis and characterization,” Polymer International, vol. 41, pp. 237-244, 1996.
  • [10] K. R. Nemade and S. A. Waghuley, “Synthesis, characterization and thermal properties of polythiophene composites,” Asian Journal of Chemistry, vol. 24, pp. 5947-5948, 2012.
  • [11] S. Sivrikaya, A. Dalmaz, S. Durmuş, “Synthesis of nano poly(2-thiophenecarboxaldehyde) and characterization of structure,” Sakarya University Journal of Science, vol. 22, pp. 1571-1575, 2018.
  • [12] C. Zanardi, F. Terzi, R. Seeber, “Polythiophenes and polythiophene-based composites in amperometric sensing,” Analytical and Bioanalytical Chemistry, vol. 405, pp. 509-531, 2013.
  • [13] H. S. Wang, L. H. Lin, S. Y. Chen, Y. L. Wang, K. H. Wei, “Ordered polythiophene/fullerene composite core-shell nanorod arrays for solar cell applications,” Nanotechnology, vol. 20, pp. 075201, 2009.
  • [14] M. R. Karim, C. J. Lee, M. S. Lee, “Synthesis and characterization of conducting polythiophene/carbon nanotubes composites,” Journal of Polymer Science (Part A) Polymer Chemistry, vol. 44, pp. 5283-5290, 2006. [15] S. G. Bachhav and D. R. Patil, “Preparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature,” Journal of Nanostructures, vol. 7, pp. 247-257, 2017.
  • [16] Z. Çaldıran, “Fabrication of Schottky barrier diodes with the lithium fluoride interface layer and electrical characterization in a wide temperature range,” Journal of Alloy and Compounds, vol. 816, pp. 152601, 2020.
  • [17] J. P. Melo, E. N. Schulz, C. M. Verdejo, S. L. Horswell, M. B. Camarada, “Synthesis and Characterization of Graphene/Polythiophene (GR/PT) Nanocomposites: Evaluation as High-Performance Supercapacitor Electrodes,” International Journal of Electrochemical Science, vol. 12, pp. 2933-2948, 2017.
  • [18] R. Singh, D. N. Srivastava, R. A. Singh, “Schottky diodes based on some semiconducting polymers,” Synthetic Metals, vol. 121, pp. 1439-1440, 2001.
  • [19] R. K. Gupta and R. A. Singh, “Schottky diode based on composite organic semiconductors,” Material Science in Semiconductor Processing, vol. 7, pp. 83-87, 2004.
  • [20] R. K. Gupta, K. Ghosh, P. K. Kahol, “Fabrication and electrical characterization of Au/p-Si/STO/Au contact,” Current Applied Physics, vol. 9, pp. 933-936, 2009.
  • [21] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 50, pp. 5052-5053, 1979.
  • [22] S. A. Yerişkin, M. Balbaşı, İ. Orak, “Frequency dependent electrical characteristics and origin of anomalous capacitance-voltage (C-V) peak in Au/(graphene-doped PVA)/n-Si capacitors,” Journal of Materials Science: Materials in Electronics, vol. 28, pp. 7819-7826, 2017.
  • [23] A. Chelkowski, “Dielektrik Physics,” Elsevier, Amsterdam, pp. 97-105, 1980.
  • [24] S. Demirezen, İ. Orak, Y. Azizian-Kalandaragh, Ş.Altındal, “Series resistance and interface states effects on the C-V and G/w-V characteristics in Au/(Co3O4-doped PVA)/n-Si structure at room temperature,” Journal of Materials Science: Materials in Electronics, vol. 28, pp. 1296-12976, 2017.
  • [25] A. Nikravan, Y. Badalı, Ş. Altındal, I. Uslu, İ. Orak, “On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage,” Journal of Electronic Materials, vol. 46, pp. 5728-5736, 2017.
  • [26] K. Chandra Sekhar Reddy, P. Sahatiya, I. Santos-Saucesa, O. Cortazar, R. Ramirez-Bon, “One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: Development of self-powered ultraviolet photodetector,” Applied Surface Science, vol. 513, pp. 145804, 2020.
  • [27] E. Daş, U. Incekara, Ş. Aydoğan, “A comparative study on electrical characteristics of Ni/n-Si and Ni/n-Pi Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature,” Optical Materials, vol. 119, pp. 111380, 2021.
  • [28] Ö. Sevgili and İ. Orak, “The investigation of current condition mechanism of Al/Y2O3/p-Si Schottky barrier diodes in wide range temperature and illuminate,” Microelectronics Reliability, vol. 117, pp. 114040, 2021.
  • [29] A. Koçyiğit, A. Sarılmaz, T. Öztürk, F. Özel, M.Yıldırım, “A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization,” Beilstein Journal of Nanotechnology, vol. 12, pp. 984-994, 2021.
  • [30] H. O. Doğan, Z. Orhan, F. Yıldırım, S. Aydoğan, “Self-powered photosensor based on curcumin:reduced graphene oxide (Cu:rGO)/n-Si heterojunction in visible and UV regions,” Journal of Alloys and Compounds, vol. 915, pp. 165428, 2022.
  • [31] M. Erdogan, Z. Orhan, E. Daş, “ Synthesis of electron-rich thiophene triphenylamine based organic materials for photodiode applications,” Optical Materials, vol. 128, pp. 112446, 2022.
  • [32] M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, “Electrical and photocurrent characteristics of Au/PVA(Co-doped)/n-Si photoconductive diodes,” Materials Science and Engineering B, vol. 177, pp. 416-420, 2012.
  • [33] S. Demirezen, Ş. Altındal, İ.Uslu, “Two diodes model and illumination effect on the forward and reverse bias I-V and C-V characteristic of Au/PVA (Bi-doped)/n-Si photodiode at room temperature,” Current Applied Physics, vol. 13, pp. 53-59, 2013. [34] T. Tunç, M. Gökçen, “Preparation and electrical characterization of Au/n-Si (110) structure with PVA-nickel acetate composite film interfacial layer,” Journal of Composite Materials, vol. 46, pp. 2843-2850, 2012.
  • [35] H. Kacus, M.Yılmaz, A. Koçyiğit, U. İncekara, Ş. Aydoğan, “ Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode,” Physica B: Condensed Matter, vol. 597, pp. 412408, 2020.
  • [36] A. G. Imer, E. Kaya, A. Dere, A. G. Al-Sehemi, A. A. Al-Ghamdi, A. Karabulut, F. Yakuphanoğlu, “Illumination impact on the electrical characteristics of Au/Sunset Yellow/n-Si/Au hybrid Schootky diode,” Journal of Materials Science:Materials in Electronics, vol. 31, pp. 14665-14673, 2020.
  • [37] M.Yılmaz, A. Koçyiğit, S. Aydoğan, U. İncekara, Y. Şahin, H. Kacus, “Influence of illumination intensity on electrical characteristics of Eosin y dye based hybrid photodiode:comparative study,” Applied Physics A, vol. 126, pp. 781, 2020.
There are 35 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Elif Daş 0000-0002-3149-6016

Project Number Yok
Publication Date October 20, 2022
Submission Date June 14, 2022
Acceptance Date August 31, 2022
Published in Issue Year 2022 Volume: 26 Issue: 5

Cite

APA Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000-1009. https://doi.org/10.16984/saufenbilder.1129742
AMA Daş E. Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. SAUJS. October 2022;26(5):1000-1009. doi:10.16984/saufenbilder.1129742
Chicago Daş, Elif. “Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /N-Silicon Heterojunction Diode”. Sakarya University Journal of Science 26, no. 5 (October 2022): 1000-1009. https://doi.org/10.16984/saufenbilder.1129742.
EndNote Daş E (October 1, 2022) Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science 26 5 1000–1009.
IEEE E. Daş, “Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode”, SAUJS, vol. 26, no. 5, pp. 1000–1009, 2022, doi: 10.16984/saufenbilder.1129742.
ISNAD Daş, Elif. “Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /N-Silicon Heterojunction Diode”. Sakarya University Journal of Science 26/5 (October 2022), 1000-1009. https://doi.org/10.16984/saufenbilder.1129742.
JAMA Daş E. Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. SAUJS. 2022;26:1000–1009.
MLA Daş, Elif. “Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /N-Silicon Heterojunction Diode”. Sakarya University Journal of Science, vol. 26, no. 5, 2022, pp. 1000-9, doi:10.16984/saufenbilder.1129742.
Vancouver Daş E. Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. SAUJS. 2022;26(5):1000-9.

Sakarya University Journal of Science (SAUJS)