Research Article
BibTex RIS Cite

Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System

Year 2022, Volume: 26 Issue: 5, 942 - 955, 20.10.2022
https://doi.org/10.16984/saufenbilder.849408

Abstract

In an indoor multiple-input multiple-output (MIMO) visible light communication (VLC) system, line of sight (LoS) channel links are present between a light-emitting diode (LED) based transmitter and a photodetector (PD) based receiver. The PDs in the receiver are closely packed resulting in a high channel correlation. To overcome channel correlation and improve the performance of the MIMO-VLC system, angle diversity receivers (ADRs) are commonly employed. The channel matrix entries depend on the normal vectors of the PDs, which in turn depend on the elevation angle (EA) of the PDs. Thus, by having normal vectors pointing in different directions, the channel correlation can be considerably reduced. This paper considers a special type of ADR called pyramid receiver (PR) and employs a 4x4 MIMO-VLC system. In this paper, different MIMO algorithms such as repetition coding (RC) and spatial multiplexing (SMP) are considered to exhibit and compare the bit-error-rate (BER) performance of the fixed and variable EA MIMO-VLC systems. The results show that an SMP-employed MIMO-VLC system outperforms the RC-employed MIMO-VLC system. SMP results in an spatial multiplexing gain that varies linearly with the number of LEDs whereas RC does not yield any spatial multiplexing gain. To attain the same spectral efficiency i.e. 4 bit/s/Hz, a larger signal constellation size is required for RC employed MIMO-VLC system to achieve the same BER as of an SMP employed MIMO-VLC system. Similarly, the BER performance of variable EA MIMO-VLC systems is better as compared to fixed EA MIMO-VLC systems.

Supporting Institution

TUBİTAK

Project Number

118E753.

References

  • [1] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, L. Gyongyosi, “Wireless myths, realities, and futures: From 3G/4G to optical and quantum wireless,” Proceedings of the IEEE, vol. 100, no. SPL CONTENT, pp. 1853–1888, 2012.
  • [2] Cisco, “Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017-2022 white paper,” Ca, Usa, pp. 3–5, 2019.
  • [3] O. Ergul, E. Dinc, O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Physical Communication, vol. 17, pp. 72–85, 2015.
  • [4] D. C. O’Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, S. Randel, “Visible Light Communications: Challenges and possibilities,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, no. June 2014, 2008.
  • [5] W. De Zhong, C. Chen, H. Yang, P. Du, “Performance analysis of angle diversity multi-element receiver in indoor multi-cell visible light communication systems,” International Conference on Transparent Optical Networks, vol. 1, pp. 2–5, 2017.
  • [6] Z. Zhan, M. Zhang, D. Han, P. Luo, X. Tang, Z. Ghassemlooy, L. Lang, “1.2 Gbps non-imaging MIMO-OFDM scheme based VLC over indoor lighting LED arrangments,” Opto-Electronics Communication Conference, OECC 2015, pp. 3–5, 2015.
  • [7] Z. Chen, N. Serafimovski, H. Haas, “Angle diversity for an indoor cellular visible light communication system,” IEEE Vehicular Technology Conference, vol. 2015, no. January, pp. 0–4, 2014.
  • [8] S. D. Dissanayake, J. Armstrong, “Comparison of ACO-OFDM , DCO-OFDM and ADO-OFDM in IM / DD Systems,” Journal of Lightwave Technology, vol. 31, no. 7, pp. 1063–1072, 2013.
  • [9] P. Fahamuel, J. Thompson, H. Haas, “Improved indoor VLC MIMO channel capacity using mobile receiver with angular diversity detectors,” IEEE Global Communications Conference 2014, pp. 2060–2065, 2014.
  • [10] O. Narmanlioglu, R. C. Kizilirmak, T. Baykas, M. Uysal, “Link adaptation for MIMO OFDM visible light communication systems,” IEEE Access, vol. 5, pp. 26006–26014, 2017.
  • [11] P. F. Mmbaga, J. Thompson, H. Haas, “Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors,” Journal of Lightwave Technology, vol. 34, no. 4, pp. 1254–1266, 2016.
  • [12] A. A. Purwita, A. Yesilkaya, I. Tavakkolnia, M. Safari, H. Haas, “Effects of Irregular Photodiode Configurations for Indoor MIMO VLC with Mobile Users,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2019-September, pp. 1–7, 2019.
  • [13] T. Q. Wang, C. He, J. Armstrong, “Performance analysis of aperture-based receivers for MIMO IM/DD visible light communications,” Journal of Lightwave Technology, vol. 35, no. 9, pp. 1513–1523, 2017.
  • [14] A. Nuwanpriya, S. W. Ho, C. S. Chen, “Angle diversity receiver for indoor MIMO visible light communications,” 2014 IEEE Globecom Workshops 2014, pp. 444–449, 2014.
  • [15] M. Hosney, H. A. I. Selmy, A. Srivastava, and K. M. F. Elsayed, “Interference Mitigation Using Angular Diversity Receiver with Efficient Channel Estimation in MIMO VLC,” IEEE Access, vol. 8, pp. 54060–54073, 2020.
  • [16] T. C. Bui, S. Kiravittaya, K. Sripimanwat, N. H. Nguyen, “A Comprehensive Lighting Configuration for Efficient Indoor Visible Light Communication Networks,” International Journal of Optics, vol. 2016, 2016.
  • [17] M. H. Khadr, A. A. El Aziz, H. A. Fayed, M. Aly, “Bandwidth and BER improvement employing a pre-equalization circuit with white LED arrays in a MISO VLC system,” Applied Science, vol. 9, no. 5, 2019.
  • [18] C. Chen, W. De Zhong, H. Yang, S. Zhang, P. Du, “Reduction of SINR Fluctuation in Indoor Multi-Cell VLC Systems Using Optimized Angle Diversity Receiver,” Journal of Lightwave Technology, vol. 36, no. 17, pp. 3603–3610, 2018.
  • [19] M. L. N. Kumar, D. Sen, P. Mohapatra, “Performance evaluation of MIMO modulation schemes for indoor VLC channels with angular detectors,” IEEE Vehicular Technology Conference, vol. 2019-September, no. 1, pp. 1–6, 2019.
  • [20] A. Nuwanpriya, S. W. Ho, C. S. Chen, “Indoor MIMO Visible Light Communications: Novel Angle Diversity Receivers for Mobile Users,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 9, pp. 1780–1792, 2015.
  • [21] A. U. Khan, Y. Çelik, S. Aldırmaz Çolak, “Capacity variation of an indoor MIMO VLC system for a pyramid receiver,” in 28th IEEE Conference on Signal Processing and Communications Applications (SİU), 2020.
  • [22] A. U. Khan, “Optimizing the performance of visible light communication system with angular diversity,” Kocaeli University, 2020.
  • [23] T. Fath, H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Transactions on Communications, vol. 61, no. 2, pp. 733–742, 2013.
Year 2022, Volume: 26 Issue: 5, 942 - 955, 20.10.2022
https://doi.org/10.16984/saufenbilder.849408

Abstract

Project Number

118E753.

References

  • [1] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, L. Gyongyosi, “Wireless myths, realities, and futures: From 3G/4G to optical and quantum wireless,” Proceedings of the IEEE, vol. 100, no. SPL CONTENT, pp. 1853–1888, 2012.
  • [2] Cisco, “Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017-2022 white paper,” Ca, Usa, pp. 3–5, 2019.
  • [3] O. Ergul, E. Dinc, O. B. Akan, “Communicate to illuminate: State-of-the-art and research challenges for visible light communications,” Physical Communication, vol. 17, pp. 72–85, 2015.
  • [4] D. C. O’Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, S. Randel, “Visible Light Communications: Challenges and possibilities,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, no. June 2014, 2008.
  • [5] W. De Zhong, C. Chen, H. Yang, P. Du, “Performance analysis of angle diversity multi-element receiver in indoor multi-cell visible light communication systems,” International Conference on Transparent Optical Networks, vol. 1, pp. 2–5, 2017.
  • [6] Z. Zhan, M. Zhang, D. Han, P. Luo, X. Tang, Z. Ghassemlooy, L. Lang, “1.2 Gbps non-imaging MIMO-OFDM scheme based VLC over indoor lighting LED arrangments,” Opto-Electronics Communication Conference, OECC 2015, pp. 3–5, 2015.
  • [7] Z. Chen, N. Serafimovski, H. Haas, “Angle diversity for an indoor cellular visible light communication system,” IEEE Vehicular Technology Conference, vol. 2015, no. January, pp. 0–4, 2014.
  • [8] S. D. Dissanayake, J. Armstrong, “Comparison of ACO-OFDM , DCO-OFDM and ADO-OFDM in IM / DD Systems,” Journal of Lightwave Technology, vol. 31, no. 7, pp. 1063–1072, 2013.
  • [9] P. Fahamuel, J. Thompson, H. Haas, “Improved indoor VLC MIMO channel capacity using mobile receiver with angular diversity detectors,” IEEE Global Communications Conference 2014, pp. 2060–2065, 2014.
  • [10] O. Narmanlioglu, R. C. Kizilirmak, T. Baykas, M. Uysal, “Link adaptation for MIMO OFDM visible light communication systems,” IEEE Access, vol. 5, pp. 26006–26014, 2017.
  • [11] P. F. Mmbaga, J. Thompson, H. Haas, “Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors,” Journal of Lightwave Technology, vol. 34, no. 4, pp. 1254–1266, 2016.
  • [12] A. A. Purwita, A. Yesilkaya, I. Tavakkolnia, M. Safari, H. Haas, “Effects of Irregular Photodiode Configurations for Indoor MIMO VLC with Mobile Users,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2019-September, pp. 1–7, 2019.
  • [13] T. Q. Wang, C. He, J. Armstrong, “Performance analysis of aperture-based receivers for MIMO IM/DD visible light communications,” Journal of Lightwave Technology, vol. 35, no. 9, pp. 1513–1523, 2017.
  • [14] A. Nuwanpriya, S. W. Ho, C. S. Chen, “Angle diversity receiver for indoor MIMO visible light communications,” 2014 IEEE Globecom Workshops 2014, pp. 444–449, 2014.
  • [15] M. Hosney, H. A. I. Selmy, A. Srivastava, and K. M. F. Elsayed, “Interference Mitigation Using Angular Diversity Receiver with Efficient Channel Estimation in MIMO VLC,” IEEE Access, vol. 8, pp. 54060–54073, 2020.
  • [16] T. C. Bui, S. Kiravittaya, K. Sripimanwat, N. H. Nguyen, “A Comprehensive Lighting Configuration for Efficient Indoor Visible Light Communication Networks,” International Journal of Optics, vol. 2016, 2016.
  • [17] M. H. Khadr, A. A. El Aziz, H. A. Fayed, M. Aly, “Bandwidth and BER improvement employing a pre-equalization circuit with white LED arrays in a MISO VLC system,” Applied Science, vol. 9, no. 5, 2019.
  • [18] C. Chen, W. De Zhong, H. Yang, S. Zhang, P. Du, “Reduction of SINR Fluctuation in Indoor Multi-Cell VLC Systems Using Optimized Angle Diversity Receiver,” Journal of Lightwave Technology, vol. 36, no. 17, pp. 3603–3610, 2018.
  • [19] M. L. N. Kumar, D. Sen, P. Mohapatra, “Performance evaluation of MIMO modulation schemes for indoor VLC channels with angular detectors,” IEEE Vehicular Technology Conference, vol. 2019-September, no. 1, pp. 1–6, 2019.
  • [20] A. Nuwanpriya, S. W. Ho, C. S. Chen, “Indoor MIMO Visible Light Communications: Novel Angle Diversity Receivers for Mobile Users,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 9, pp. 1780–1792, 2015.
  • [21] A. U. Khan, Y. Çelik, S. Aldırmaz Çolak, “Capacity variation of an indoor MIMO VLC system for a pyramid receiver,” in 28th IEEE Conference on Signal Processing and Communications Applications (SİU), 2020.
  • [22] A. U. Khan, “Optimizing the performance of visible light communication system with angular diversity,” Kocaeli University, 2020.
  • [23] T. Fath, H. Haas, “Performance comparison of MIMO techniques for optical wireless communications in indoor environments,” IEEE Transactions on Communications, vol. 61, no. 2, pp. 733–742, 2013.
There are 23 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Aamir Ullah Khan 0000-0003-2352-5697

Sultan Aldırmaz Çolak 0000-0001-7154-0723

Yasin Çelik 0000-0001-8972-9970

Project Number 118E753.
Publication Date October 20, 2022
Submission Date December 29, 2020
Acceptance Date August 15, 2022
Published in Issue Year 2022 Volume: 26 Issue: 5

Cite

APA Khan, A. U., Aldırmaz Çolak, S., & Çelik, Y. (2022). Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System. Sakarya University Journal of Science, 26(5), 942-955. https://doi.org/10.16984/saufenbilder.849408
AMA Khan AU, Aldırmaz Çolak S, Çelik Y. Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System. SAUJS. October 2022;26(5):942-955. doi:10.16984/saufenbilder.849408
Chicago Khan, Aamir Ullah, Sultan Aldırmaz Çolak, and Yasin Çelik. “Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System”. Sakarya University Journal of Science 26, no. 5 (October 2022): 942-55. https://doi.org/10.16984/saufenbilder.849408.
EndNote Khan AU, Aldırmaz Çolak S, Çelik Y (October 1, 2022) Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System. Sakarya University Journal of Science 26 5 942–955.
IEEE A. U. Khan, S. Aldırmaz Çolak, and Y. Çelik, “Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System”, SAUJS, vol. 26, no. 5, pp. 942–955, 2022, doi: 10.16984/saufenbilder.849408.
ISNAD Khan, Aamir Ullah et al. “Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System”. Sakarya University Journal of Science 26/5 (October 2022), 942-955. https://doi.org/10.16984/saufenbilder.849408.
JAMA Khan AU, Aldırmaz Çolak S, Çelik Y. Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System. SAUJS. 2022;26:942–955.
MLA Khan, Aamir Ullah et al. “Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System”. Sakarya University Journal of Science, vol. 26, no. 5, 2022, pp. 942-55, doi:10.16984/saufenbilder.849408.
Vancouver Khan AU, Aldırmaz Çolak S, Çelik Y. Performance Analysis of MIMO Techniques for a Pyramid Receiver in an Indoor MIMO-VLC System. SAUJS. 2022;26(5):942-55.