Research Article
PDF EndNote BibTex RIS Cite

Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks

Year 2022, Volume 26, Issue 6, 1117 - 1130, 31.12.2022
https://doi.org/10.16984/saufenbilder.1085086

Abstract

Quinazoline and quinazolinone derivatives display an extensive application in organic and pharmaceutical chemistry, and they have been used as natural and synthetic materials for medicinal chemistry purposes. Here I reported an investigation of a new series of quinazolinone ring derivatives. In this context, starting from the methyl anthranilate, six quinazolinone derivatives (4a-f) with various aminomethyl moieties at position 2 were synthesized (89-80%). The structures of compounds 4a-f were identified using FTIR and NMR Spectroscopy (1H NMR - 13C NMR). The data obtained from the all spectra clearly identify the structures of the compounds.

References

  • [1] R. J. Abdel-Jalil, H. M. Aldoqum, M. T. Ayoub, W. Voelter, “Synthesis and Antitumor Activity of 2-aryl-7-fluoro-6-(4-methyl-1-piperazinyl)-4(3H)-quinazolinones,” Heterocycles-Sendai Institute Heterocyclic Chemistry, vol.65, pp.2061-2070, 2005.
  • [2] A. S. El-Azab, K. E. El-Tahir, “Design and Synthesis of Novel 7-Aminoquinazoline Derivatives: Antitumor and Anticonvulsant Activities,” Bioorganic and Medicinal Chemistry Letters, vol.22, pp.1879-1885, 2012.
  • [3] V. M. Sharma, P. Prasanna, K. A. Seshu, B. Renuka, C. L. Rao, G. S. Kumar, C. P. Narasimhulu, P. A. Babu, R. Puranik, D. Subramanyam, “Novel Indolo [2, 1-b] quinazoline Analogues as Cytostatic Agents: Synthesis, Biological Evaluation and Structure–activity Relationship,” Bioorganic and Medicinal Chemistry Letters, vol.12 pp.2303-2307, 2002.
  • [4] H. J. Park, Y-S. Kim, J. S. Kim, E-J. Lee, Y-J. Yi, H. J. Hwang, M-E. Suh, C-K. Ryu, S. K. Lee, “6-Arylamino-7-chloro-quinazoline-5,8-diones as Novel Cytotoxic and DNA Topoisomerase Inhibitory Agents,” Bioorganic and Medicinal Chemistry Letters, vol.14, pp.3385-3388, 2004.
  • [5] Z. Ma, Y. Hano, T. Nomura, Y. Chen, “Novel Quinazoline–quinoline Qlkaloids with Cytotoxic and DNA Topoisomerase II Inhibitory Activities,” Bioorganic and Medicinal Chemistry Letters, vol.14, pp.1193-1196, 2004.
  • [6] N. Malecki, P. Carato, B. T. Rigo, J-F. Goossens, R. Houssin, C. Bailly, J-P, Hénichart, “Synthesis of Condensed Quinolines and Quinazolines as DNA Ligands,” Bioorganic and Medicinal Chemistry, vol.12 pp.641-647, 2004.
  • [7] E. Manivannan, S. Chaturvedi, “Analogue-based Design, Synthesis and Molecular Docking Analysis of 2,3-Diaryl Quinazolinones as Non-ulcerogenic Anti-inflammatory Agents,” Bioorganic and Medicinal Chemistry, vol.19, pp.4520-4528, 2011.
  • [8] A. Gangjee, O. O. Adair, M. Pagley, S. F. Queener, “N9-substituted 2,4-diaminoquinazolines: Synthesis and Biological Evaluation of Lipophilic Inhibitors of Pneumocystis Carinii and Toxoplasma Gondii Dihydrofolate Reductase,” Journal of Medicinal Chemistry, vol.51, pp.6195-6200, 2008.
  • [9] J. Chevalier, A. Mahamoud, M. Baitiche, E. Adam, M. Viveiros, A. Smarandache, A. Militaru, M. L. Pascu, L. Amaral, J-M, Pagès, “Quinazoline Derivatives are Efficient Chemosensitizers of Antibiotic Activity in Enterobacter Aerogenes, Klebsiella Pneumoniae and Pseudomonas Aeruginosa Resistant Strains,” International Journal of Antimicrobial Agents, vol.36, pp.164-168, 2010.
  • [10] A. Mahamoud, J. Chevalier, M. Baitiche, E. Adam, J-M, Pages, “An Alkylaminoquinazoline Restores Antibiotic Activity in Gram-negative Resistant Isolates,” Microbiology, vol.157, pp.566-571, 2011.
  • [11] K. Bajaj, V. K. Srivastava, A. Kumar, “Newer Substituted Benzoxazepinyl quinazolinones as Potent Antipsychotic and Anticonvulsant Agents,” ArzneimittelForschung, vol.53, pp.480-485, 2003.
  • [12] M. Amir, I. Ali, M. Z. Hassan, “Design and Synthesis of Some New Quinazolin-4-(3H)-ones as Anticonvulsant and Antidepressant Agents,” Archives of Pharmacal Research, vol.36, pp.61-68, 2013.
  • [13] M. Shivananda, B. S. Holla, “Antifungal Activity Studies of Some Quinazolinone Derivatives,” Journal of Chemical and Pharmaceutical Research, vol.3, pp.83-86, 2011.
  • [14] M. Decker, “Novel Inhibitors of Acetyl and Butyrylcholinesterase Derived from the Alkaloids Dehydroevodiamine and Rutaecarpine,” European Journal of Medicinal Chemistry, vol.40, pp.305-313, 2005.
  • [15] F. S. Tokalı, P. Taslimi, İ. H. Demircioğlu, M. Karaman, M. S. Gültekin, K. Şendil, İ. Gülçin, “Design, Synthesis, Molecular Docking, and Some Metabolic Enzyme Inhibition Properties of Novel Quinazolinone Derivatives,” Archiv der Pharmazie (Weinheim, Germany), vol.354, no.5, pp.2000455, 2021.
  • [16] A. Gürsoy, N. Karalı, “Synthesis and Primary Cytotoxicity Evaluation of 3-[[(3-Phenyl-4(3H)-quinazolinone-2-yl) mercaptoacetyl] hydrazono]-1H-2-indolinones,” European Journal of Medicinal Chemistry, vol.38, pp.633-643, 2003.
  • [17] M. S. Malamas, J. Millen, “Quinazolineacetic Acids and Related Analogs as Aldose Reductase Inhibitors,” Journal of Medicinal Chemistry, vol.34 pp.1492-1503, 1991.
  • [18] F. S. Tokalı, Y. Demir, İ. H. Demircioğlu, C. Türkeş, E. Kalay, K. Şendil, Ş. Beydemir, “Synthesis, in silico docking study and biological evaluation of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors,” Drug Development Research, vol.83, no.3, pp.586-604 2022.
  • [19] A. Gangjee, M. Kothare, R. L. Kisliuk, “The Synthesis of Novel Nonclassical Reversed Bridge Quinazoline Antifolates as Inhibitors of Thymidylate Synthase,” Journal of Heterocyclic Chemistry, vol.37, pp.1097-1102, 2000.
  • [20] R-D. Li, X. Zhang, Q-Y. Li, Z-M. Ge, R-T. Li, “Novel EGFR Inhibitors Prepared by Combination of Dithiocarbamic Acid Esters and 4-Anilinoquinazolines,” Bioorganic and Medicinal Chemistry Letters, vol.21, pp.3637-3640, 2011.
  • [21] J. P. Patil, S. V. Amrutkar, M. S. Ranawat, “Microwave Assisted Synthesis of Quinazolinone Using Different Bases,” Journal of Pharmaceutical Sciences and Research, vol.1, no.3, pp.52-54, 2009.
  • [22] S. G. Davies, K. B. Ling, R. M. Roberts, A. J. Russell, J. E. Thomson, P. A. Woods, “The Stereodivergent Aziridination of Allylic Carbamates, Amides and Sulfonamides,” Tetrahedron, vol.66, no.34, pp.6806-6813, 2010.
  • [23] A. M. F. Eissa, A. M. El-Metwally, M. A. El-Hashash, A. M. F. El-Gohary, “Synthesis and Biological Evaluation of Some New 2-Propyl-4(3H)-quinazolinone Derivatives as Anti-bacteria,” Journal of the Korean Chemical Society, vol.52, no.3, pp.328-337, 2008.
  • [24] A. F. M. Fahmy, M. A. El-Hashash, M. M. Habashy, S. A. El-Wannise, “Some Reactions of 2-Isopropyl-[4H]-3,1-benzoxazin-4-one,” Revue Roumaine de Chimie, vol.23, no.11-12, pp.1567-1573, 1978.
  • [25] V. Alagarsamy, V. Rajasolomon, R. Meena, K. V. Ramseshu, “Synthesis and Analgesic, Anti-inflammatory and Antibacterial Activities of Some Novel 3-substituted 2-butylquinazolin-4(3H)-ones,” Biological & Pharmaceutical Bulletin, vol.28, no.6, pp.1091-1094, 2005.
  • [26] M. A. El-Sherbeny, “Synthesis, Antitumor Activity, and Anti-HIV-1 Testing of Certain Heterocyclic Systems Containing an Adamantane Nucleus,” Archiv der Pharmazie (Weinheim, Germany), vol.333, no.10, pp.323-328, 2000.
  • [27] P. Kumar, B. Shrivastava, S. N. Pandeya, J. P. Stables, “Design, Synthesis and Potential 6 Hz Psychomotor Seizure Test Activity of Some Novel 2-(Substituted)-3-{[substituted]amino}quinazolin-4(3H)-one,” European Journal of Medicinal Chemistry, vol.46, no.4, pp.1006-1018, 2011.
  • [28] C. K. Reddy, P. S. N. Reddy, C. V. Ratnam, “A New Synthesis of 2-Aryl-3,4-dihydro-5H-1,3,4-benzotriazepin-5-ones,” Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, vol.24B, no.9, pp.902-904, 1985.
  • [29] H. Patel, R. Pawara, S. Surana, “Resolving the Mystery of Ring Opening in the Synthesis of Benzo[d][1, 3]oxazin-4-one and Quinazolin-4(3H)-one,” Letters in Organic Chemistry, vol.16, no.11, pp.898-905, 2019.
  • [30] L. M. Deck, S. D. Turner, J. A. Deck, E. P. Papadopoulos, “ Synthesis of Derivatives of Thiophene Using Methyl 2-isothiocyanatobenzoate,” Journal of Heterocyclic Chemistry, vol.38, no.2, pp.343-347, 2001.
  • [31] F. Sauter, P. Stanetty, U. Jordis, “New 3-Aminoquinazolinones,” Archiv der Pharmazie (Weinheim, Germany), vol.310, no.8, pp.680-682, 1977.
  • [32] F. S. Tokalı, P. Taslimi, İ. H. Demircioğlu, K. Şendil, B. Tüzün, İ. Gülçin, “Novel Phenolic Mannich Base Derivatives: Synthesis, Bioactivity, Molecular Docking, and ADME-Tox Studies,” Journal of the Iranian Chemical Society, vol.19, pp.563–577, 2022.
  • [33] G. Roman, “Mannich bases in medicinal chemistry and drug design,” European Journal of Medicinal Chemistry, vol. 89, pp. 743 – 816, 2015.

Year 2022, Volume 26, Issue 6, 1117 - 1130, 31.12.2022
https://doi.org/10.16984/saufenbilder.1085086

Abstract

References

  • [1] R. J. Abdel-Jalil, H. M. Aldoqum, M. T. Ayoub, W. Voelter, “Synthesis and Antitumor Activity of 2-aryl-7-fluoro-6-(4-methyl-1-piperazinyl)-4(3H)-quinazolinones,” Heterocycles-Sendai Institute Heterocyclic Chemistry, vol.65, pp.2061-2070, 2005.
  • [2] A. S. El-Azab, K. E. El-Tahir, “Design and Synthesis of Novel 7-Aminoquinazoline Derivatives: Antitumor and Anticonvulsant Activities,” Bioorganic and Medicinal Chemistry Letters, vol.22, pp.1879-1885, 2012.
  • [3] V. M. Sharma, P. Prasanna, K. A. Seshu, B. Renuka, C. L. Rao, G. S. Kumar, C. P. Narasimhulu, P. A. Babu, R. Puranik, D. Subramanyam, “Novel Indolo [2, 1-b] quinazoline Analogues as Cytostatic Agents: Synthesis, Biological Evaluation and Structure–activity Relationship,” Bioorganic and Medicinal Chemistry Letters, vol.12 pp.2303-2307, 2002.
  • [4] H. J. Park, Y-S. Kim, J. S. Kim, E-J. Lee, Y-J. Yi, H. J. Hwang, M-E. Suh, C-K. Ryu, S. K. Lee, “6-Arylamino-7-chloro-quinazoline-5,8-diones as Novel Cytotoxic and DNA Topoisomerase Inhibitory Agents,” Bioorganic and Medicinal Chemistry Letters, vol.14, pp.3385-3388, 2004.
  • [5] Z. Ma, Y. Hano, T. Nomura, Y. Chen, “Novel Quinazoline–quinoline Qlkaloids with Cytotoxic and DNA Topoisomerase II Inhibitory Activities,” Bioorganic and Medicinal Chemistry Letters, vol.14, pp.1193-1196, 2004.
  • [6] N. Malecki, P. Carato, B. T. Rigo, J-F. Goossens, R. Houssin, C. Bailly, J-P, Hénichart, “Synthesis of Condensed Quinolines and Quinazolines as DNA Ligands,” Bioorganic and Medicinal Chemistry, vol.12 pp.641-647, 2004.
  • [7] E. Manivannan, S. Chaturvedi, “Analogue-based Design, Synthesis and Molecular Docking Analysis of 2,3-Diaryl Quinazolinones as Non-ulcerogenic Anti-inflammatory Agents,” Bioorganic and Medicinal Chemistry, vol.19, pp.4520-4528, 2011.
  • [8] A. Gangjee, O. O. Adair, M. Pagley, S. F. Queener, “N9-substituted 2,4-diaminoquinazolines: Synthesis and Biological Evaluation of Lipophilic Inhibitors of Pneumocystis Carinii and Toxoplasma Gondii Dihydrofolate Reductase,” Journal of Medicinal Chemistry, vol.51, pp.6195-6200, 2008.
  • [9] J. Chevalier, A. Mahamoud, M. Baitiche, E. Adam, M. Viveiros, A. Smarandache, A. Militaru, M. L. Pascu, L. Amaral, J-M, Pagès, “Quinazoline Derivatives are Efficient Chemosensitizers of Antibiotic Activity in Enterobacter Aerogenes, Klebsiella Pneumoniae and Pseudomonas Aeruginosa Resistant Strains,” International Journal of Antimicrobial Agents, vol.36, pp.164-168, 2010.
  • [10] A. Mahamoud, J. Chevalier, M. Baitiche, E. Adam, J-M, Pages, “An Alkylaminoquinazoline Restores Antibiotic Activity in Gram-negative Resistant Isolates,” Microbiology, vol.157, pp.566-571, 2011.
  • [11] K. Bajaj, V. K. Srivastava, A. Kumar, “Newer Substituted Benzoxazepinyl quinazolinones as Potent Antipsychotic and Anticonvulsant Agents,” ArzneimittelForschung, vol.53, pp.480-485, 2003.
  • [12] M. Amir, I. Ali, M. Z. Hassan, “Design and Synthesis of Some New Quinazolin-4-(3H)-ones as Anticonvulsant and Antidepressant Agents,” Archives of Pharmacal Research, vol.36, pp.61-68, 2013.
  • [13] M. Shivananda, B. S. Holla, “Antifungal Activity Studies of Some Quinazolinone Derivatives,” Journal of Chemical and Pharmaceutical Research, vol.3, pp.83-86, 2011.
  • [14] M. Decker, “Novel Inhibitors of Acetyl and Butyrylcholinesterase Derived from the Alkaloids Dehydroevodiamine and Rutaecarpine,” European Journal of Medicinal Chemistry, vol.40, pp.305-313, 2005.
  • [15] F. S. Tokalı, P. Taslimi, İ. H. Demircioğlu, M. Karaman, M. S. Gültekin, K. Şendil, İ. Gülçin, “Design, Synthesis, Molecular Docking, and Some Metabolic Enzyme Inhibition Properties of Novel Quinazolinone Derivatives,” Archiv der Pharmazie (Weinheim, Germany), vol.354, no.5, pp.2000455, 2021.
  • [16] A. Gürsoy, N. Karalı, “Synthesis and Primary Cytotoxicity Evaluation of 3-[[(3-Phenyl-4(3H)-quinazolinone-2-yl) mercaptoacetyl] hydrazono]-1H-2-indolinones,” European Journal of Medicinal Chemistry, vol.38, pp.633-643, 2003.
  • [17] M. S. Malamas, J. Millen, “Quinazolineacetic Acids and Related Analogs as Aldose Reductase Inhibitors,” Journal of Medicinal Chemistry, vol.34 pp.1492-1503, 1991.
  • [18] F. S. Tokalı, Y. Demir, İ. H. Demircioğlu, C. Türkeş, E. Kalay, K. Şendil, Ş. Beydemir, “Synthesis, in silico docking study and biological evaluation of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors,” Drug Development Research, vol.83, no.3, pp.586-604 2022.
  • [19] A. Gangjee, M. Kothare, R. L. Kisliuk, “The Synthesis of Novel Nonclassical Reversed Bridge Quinazoline Antifolates as Inhibitors of Thymidylate Synthase,” Journal of Heterocyclic Chemistry, vol.37, pp.1097-1102, 2000.
  • [20] R-D. Li, X. Zhang, Q-Y. Li, Z-M. Ge, R-T. Li, “Novel EGFR Inhibitors Prepared by Combination of Dithiocarbamic Acid Esters and 4-Anilinoquinazolines,” Bioorganic and Medicinal Chemistry Letters, vol.21, pp.3637-3640, 2011.
  • [21] J. P. Patil, S. V. Amrutkar, M. S. Ranawat, “Microwave Assisted Synthesis of Quinazolinone Using Different Bases,” Journal of Pharmaceutical Sciences and Research, vol.1, no.3, pp.52-54, 2009.
  • [22] S. G. Davies, K. B. Ling, R. M. Roberts, A. J. Russell, J. E. Thomson, P. A. Woods, “The Stereodivergent Aziridination of Allylic Carbamates, Amides and Sulfonamides,” Tetrahedron, vol.66, no.34, pp.6806-6813, 2010.
  • [23] A. M. F. Eissa, A. M. El-Metwally, M. A. El-Hashash, A. M. F. El-Gohary, “Synthesis and Biological Evaluation of Some New 2-Propyl-4(3H)-quinazolinone Derivatives as Anti-bacteria,” Journal of the Korean Chemical Society, vol.52, no.3, pp.328-337, 2008.
  • [24] A. F. M. Fahmy, M. A. El-Hashash, M. M. Habashy, S. A. El-Wannise, “Some Reactions of 2-Isopropyl-[4H]-3,1-benzoxazin-4-one,” Revue Roumaine de Chimie, vol.23, no.11-12, pp.1567-1573, 1978.
  • [25] V. Alagarsamy, V. Rajasolomon, R. Meena, K. V. Ramseshu, “Synthesis and Analgesic, Anti-inflammatory and Antibacterial Activities of Some Novel 3-substituted 2-butylquinazolin-4(3H)-ones,” Biological & Pharmaceutical Bulletin, vol.28, no.6, pp.1091-1094, 2005.
  • [26] M. A. El-Sherbeny, “Synthesis, Antitumor Activity, and Anti-HIV-1 Testing of Certain Heterocyclic Systems Containing an Adamantane Nucleus,” Archiv der Pharmazie (Weinheim, Germany), vol.333, no.10, pp.323-328, 2000.
  • [27] P. Kumar, B. Shrivastava, S. N. Pandeya, J. P. Stables, “Design, Synthesis and Potential 6 Hz Psychomotor Seizure Test Activity of Some Novel 2-(Substituted)-3-{[substituted]amino}quinazolin-4(3H)-one,” European Journal of Medicinal Chemistry, vol.46, no.4, pp.1006-1018, 2011.
  • [28] C. K. Reddy, P. S. N. Reddy, C. V. Ratnam, “A New Synthesis of 2-Aryl-3,4-dihydro-5H-1,3,4-benzotriazepin-5-ones,” Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, vol.24B, no.9, pp.902-904, 1985.
  • [29] H. Patel, R. Pawara, S. Surana, “Resolving the Mystery of Ring Opening in the Synthesis of Benzo[d][1, 3]oxazin-4-one and Quinazolin-4(3H)-one,” Letters in Organic Chemistry, vol.16, no.11, pp.898-905, 2019.
  • [30] L. M. Deck, S. D. Turner, J. A. Deck, E. P. Papadopoulos, “ Synthesis of Derivatives of Thiophene Using Methyl 2-isothiocyanatobenzoate,” Journal of Heterocyclic Chemistry, vol.38, no.2, pp.343-347, 2001.
  • [31] F. Sauter, P. Stanetty, U. Jordis, “New 3-Aminoquinazolinones,” Archiv der Pharmazie (Weinheim, Germany), vol.310, no.8, pp.680-682, 1977.
  • [32] F. S. Tokalı, P. Taslimi, İ. H. Demircioğlu, K. Şendil, B. Tüzün, İ. Gülçin, “Novel Phenolic Mannich Base Derivatives: Synthesis, Bioactivity, Molecular Docking, and ADME-Tox Studies,” Journal of the Iranian Chemical Society, vol.19, pp.563–577, 2022.
  • [33] G. Roman, “Mannich bases in medicinal chemistry and drug design,” European Journal of Medicinal Chemistry, vol. 89, pp. 743 – 816, 2015.

Details

Primary Language English
Subjects Engineering, Chemical
Journal Section Research Articles
Authors

Feyzi Sinan TOKALI> (Primary Author)
KAFKAS ÜNİVERSİTESİ
0000-0001-5532-8802
Türkiye

Publication Date December 31, 2022
Submission Date March 9, 2022
Acceptance Date September 29, 2022
Published in Issue Year 2022, Volume 26, Issue 6

Cite

Bibtex @research article { saufenbilder1085086, journal = {Sakarya University Journal of Science}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2022}, volume = {26}, number = {6}, pages = {1117 - 1130}, doi = {10.16984/saufenbilder.1085086}, title = {Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks}, key = {cite}, author = {Tokalı, Feyzi Sinan} }
APA Tokalı, F. S. (2022). Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks . Sakarya University Journal of Science , 26 (6) , 1117-1130 . DOI: 10.16984/saufenbilder.1085086
MLA Tokalı, F. S. "Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks" . Sakarya University Journal of Science 26 (2022 ): 1117-1130 <https://dergipark.org.tr/en/pub/saufenbilder/issue/74051/1085086>
Chicago Tokalı, F. S. "Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks". Sakarya University Journal of Science 26 (2022 ): 1117-1130
RIS TY - JOUR T1 - Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks AU - Feyzi SinanTokalı Y1 - 2022 PY - 2022 N1 - doi: 10.16984/saufenbilder.1085086 DO - 10.16984/saufenbilder.1085086 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1117 EP - 1130 VL - 26 IS - 6 SN - -2147-835X M3 - doi: 10.16984/saufenbilder.1085086 UR - https://doi.org/10.16984/saufenbilder.1085086 Y2 - 2022 ER -
EndNote %0 Sakarya University Journal of Science Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks %A Feyzi Sinan Tokalı %T Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks %D 2022 %J Sakarya University Journal of Science %P -2147-835X %V 26 %N 6 %R doi: 10.16984/saufenbilder.1085086 %U 10.16984/saufenbilder.1085086
ISNAD Tokalı, Feyzi Sinan . "Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks". Sakarya University Journal of Science 26 / 6 (December 2022): 1117-1130 . https://doi.org/10.16984/saufenbilder.1085086
AMA Tokalı F. S. Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks. SAUJS. 2022; 26(6): 1117-1130.
Vancouver Tokalı F. S. Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks. Sakarya University Journal of Science. 2022; 26(6): 1117-1130.
IEEE F. S. Tokalı , "Synthesis and Structural Characterization of Novel 2-Aminomethyl Quinazolin-4(3H)-ones as Organic Building Blocks", Sakarya University Journal of Science, vol. 26, no. 6, pp. 1117-1130, Dec. 2022, doi:10.16984/saufenbilder.1085086

Sakarya University Journal of Science (SAUJS)