Research Article
BibTex RIS Cite
Year 2022, Volume: 26 Issue: 6, 1170 - 1179, 31.12.2022
https://doi.org/10.16984/saufenbilder.1135112

Abstract

References

  • [1] S. Singh, M. K. Mandal, A. Masih, A. Saha, S. K. Ghosh, H. R. Bhat, U. P. Singh, “1,3,5-Triazine: A versatile pharmacophore with diverse biological activities”, Archiv der Pharmazie, vol. 354, no. 6, pp. 1-23, 2021.
  • [2] D. Maliszewski, A. Wrobel, B. Kolensinska, J. Fraczyk, D. Drozdowska, “1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors”, Molecules, vol. 26, pp. 3942, 2021.
  • [3] F. Li, C. Wang, Y. Xu, Z. Zhao, J. Su, C. Luo, Y. Ning, Z. Li, C. Li, L. Wang, “Efficient synthesis of unsymmetrical trisubstituted 1,3,5-triazines catalyzed by hemoglobin”, Molecular Catalysis, vol. 505, pp. 111519, 2021.
  • [4] K. Kaminska, J. Ziemb, J. Ner, J. S. Schwed, D. Łazewska, M. Wiecek, T. Karcz, A. Olejarz, G. Latacz, K. Kuder, T. Kottke, M. Zygmunt, J. Sapa, J. K. Wojciechowska, H. Stark, K. K.-Kononowicz, K., “(2-Arylethenyl)-1,3,5-triazin-2-amines as novel histamine H4 receptor ligands”, European Journal of Medicinal Chemistry, vol. 103, pp. 238–251, 2015.
  • [5] W. Huang, W. Zheng, D. J. Urban, J. Inglese, E. Sidransky, C. P. Austin, C. J., Thomas, “N4-phenyl modifications of N2-(2-hydroxyl) ethyl-6-(pyrrolidin-1-yl)-1,3,5-triazine-2,4-diamines enhance glucocerebrosidase inhibition by small molecules with potential as chemical chaperones for Gaucher disease”, Bioorganic & Medicinal Chemistry Letters, vol. 17, pp. 5783–5789, 2007.
  • [6] K. Iikubo, Y. Kondoh, I. Shimada, T. Matsuya, K. Mori, Y. Ueno, M. Okada, “2. Discovery of N-{2-Methoxy-4-[4-(4-methylpiperazin-1-yl) piperidin-1-yl] phenyl}-N'-[2-(propane-2-sulfonyl) phenyl]-1,3,5-triazine-2,4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor”, Chemical and Pharmaceutical Bulletin, vol. 66, pp. 251–262, 2018.
  • [7] K. Kaitoh, A. Nakatsu, S. Mori, H. Kagechika, Y. Hashimoto, S. Fujii, “Design, Synthesis and Biological Evaluation of Novel Nonsteroidal Progesterone Receptor Antagonists Based on Phenylamino-1,3,5-triazine Scaffold”, Chemical and Pharmaceutical Bulletin, vol. 67, pp. 566–575, 2019.
  • [8] N. Lolak, S. Akocak, S. Bua, R. K. K. Sanku, C. T. Supuran, “Discovery of New Ureido Benzenesulfonamides Incorporating 1,3,5-Triazine Moieties as Carbonic Anhydrase I, Ii, Ix and Xii Inhibitors”, Bioorganic & Medicinal Chemistry, vol. 27, no. 8, pp. 1588–1594, 2019.
  • [9] Z. Tber, M. Wartenberg, J. E. Jacques, V. Roy, F. Lecaille, D. Warszycki, A. J. Bojarski, G. Lalmanach, L. A. Agrofoglio, “Selective inhibition of human cathepsin S by 2,4,6-trisubstituted 1,3,5-triazine analogs”, Bioorganic & Medicinal Chemistry, vol. 26, pp. 4310–4319, 2018.
  • [10] P. Singh, S. Kaur, P. Kumari, B. Kaur, M. Kaur, G. Singh, R. Bhatti, M. Bhatti, “Ailoring the Substitution Pattern on 1,3,5-Triazine for Targeting Cyclooxygenase-2: Discovery and Structure–Activity Relationship of Triazine–4-Aminophenylmorpholin-3-one Hybrids that Reverse Algesia and Inflammation in Swiss Albino Mice”, Journal of Medicinal Chemistry, vol. 61, pp. 7929–7941, 2018.
  • [11] A. V. Shastin, A. O. Petrov, G. V. Malkov, T. N. Gavrishova, “Synthesis of azidopropargylamino-substituted 1,3,5-triazines- novel monomers for the production of energetic polymers”, Chemistry of Heterocyclic Compounds, vol. 57, no. 7/8, pp. 866-870, 2021.
  • [12] E. M. Smolin, “s-Triazine and Derivatives”, Rapoport L., Interscience Publishers, New York, 1959.
  • [13] Bartholomew, D., Pergamon, Oxford, 1996.
  • [14] D. L. Comins, O. Connor, “Advances in Heterocyclic Chemistry”, A. R. Katritzky (Ed.), Academic, New York, 1988.
  • [15] G. Giacomelli, A. Porcheddu, L. D. Luca, “[1,3,5]-Triazine: A Versatile Heterocycle in Current Applications of Organic Chemistry”, Current Organic Chemistry, vol. 8, pp. 1497-1519, 2004.
  • [16] R. R. Gupta, M. Kumar, V. Gupta, vol. 2, SpringerVerlag, Berlin, Heidelberg, New York, 1998.
  • [17] R. R. Gupta, M. Kumar, V. Gupta, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
  • [18] G. Blonty, Tetrahedron, “Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis”, vol. 62, no. 41, pp. 9507-9522, 2006.
  • [19] E. Hollink, E. E. Simanek, D. E. Bergbreiter, “Strategies for protecting and manipulating triazine derivatives”, Tetrahedron Letters, vol. 46, pp. 2005-2008, 2005.
  • [20] T. Carofiglio, A. Varotto, U. Tonellato, “One-Pot synthesis of cyanuric acid-bridged porphyrin−porphyrin dyads”, The Journal of Organic Chemistry, vol. 69, no. 23, pp. 8121-8124, 2004.
  • [21] T. J. Mooibroek, P. Gamez, “The s-triazine ring, a remarkable unit to generate supramolecular interactions”, Inorganica Chimica Acta, vol. 360, no.1, 381-404, 2007.
  • [22] D. P. Hoog, P. Gamez, W. L. Dressen, J. Reedijk, “New polydentate and polynucleating N-donor ligands from amines and 2,4,6-trichloro-1,3,5-triazine”, Tetrahedron Letters, vol. 43, pp. 6783-6786, 2002.
  • [23] Z. E. Koc, “Complexes of iron (III) and chromium (III) salen and salophen Schiff bases with bridging 1, 3, 5 triazine derived multidirectional ligands”, Journal of Heterocyclic Chemistry, vol. 48, no. 4, pp. 769-775, 2011.
  • [24] A. Usta, H. C. Vural, B. Asık, K. Usta, “Screening of free radical formation in crystals of guanosine by ESR study”, Journal of Molecular Structure, vol. 1004, no. 1-3, pp. 292-295, 2011.
  • [25] D. Chatterjee, A. Mahata, “Evidence of superoxide radical formation in the photodegradation of pesticide on the dye modified TiO2 surfaceusing visible light”, Journal of Photochemistry and Photobiology A, vol. 165, pp. 19-23, 2004.
  • [26] A. Usta, H. C. Vural, K. Usta, E. Aras, Y. Ceylan, A. Ozmen, “An EPR study on cytosine irradiated”, Journal of Physical Organic Chemistry, vol. 24, pp. 635-639, 2011.
  • [27] N. D. Yordanov, K. Aleksieva, “EPR studies on gamma-irradiated snails hard tissues”, Radiation Physics and Chemistry, vol. 78, pp. 213-216, 2019.
  • [28] G. Onay, R. Sahin, “Optical properties of the electron and gamma-ray irradiated soda-lime glass samples”, Sakarya University Journal of Science, 22(6), 1518-1523, 2018.
  • [29] A. Kahraman, E. Yılmaz, “Evaluation of the pre-irradiation electrical characteristics of the RadFET dosimeters with diverse gate oxides by TCAD simulation program”, Sakarya University Journal of Science, 21(6), 1258-1265, 2017.
  • [30] K. Usta, O. O. Karakus., A. Usta, H. Deligoz, “Identification of radiation-induced radical structure in azocalix [4] arene: an EPR study”, Magnetic Resonance in Chemistry, vol. 51, pp. 671-675, 2013.
  • [31] Y. Ceylan, K. Usta, A. Kunduracioglu, A. Usta, B. Cetinkaya, “Identification of radical structures on 1-pentamethylbenzyl-3-ethylimidazoliumsilver(I)bromide and1,3-bis(pentamethylbenzyl)-4,5 dimethylbenzimidazoliumsilver(I)bromide exposed to gamma rays: an EPR study, Magnetic Resonance in Chemistry, vol. 54, pp. 864–869, 2016.
  • [32] K. Usta, Y. Ceylan, A. Usta, N. Ceylan, E. Aras, “An EPR Study on Radiation-Induced 2-(piperidin-1-ylmethyl) phenol Single Crystal”, Acta Physica Polonica A, vol. 130, no. 1, pp. 178-180, 2016.
  • [33] Y. Ceylan, K. Usta, N. Ceylan, A. Usta, Y. Koc, “Comparative Study of Influences of Gamma Rays on Calix [4] Arene and 25,27-di(4-Nitrobenzyl)-26,28-Dihydroxycalix [4] Arene: EPR Study”, Acta Physica Polonica A, vol. 132, pp. 1211-1213, 2017.
  • [34] Ö. Aybirdi, H. Necefoğlu, “Metal (II) p-dimetilaminobenzoatların izonikotinamid komplekslerinin sentezi, spektroskopik ve termal karakterizasyonu”, Sakarya University Journal of Science, 20(2), 167-175, 2016.
  • [35] O. Karatas, E. Aras, “Electron paramagnetic resonance of gamma-irradiated single crystals of ethan-1,2 disulfonic acid disodium”, Journal of Molecular Structure, vol. 1027, pp. 49-52, 2012.
  • [36] O. Karatas, E. Aras, A. H. Karadag, Y. Islek, “Electron paramagnetic resonance study of gamma (γ)-irradiated methyl 4-methyl benzoate (C9H10O2)”, Radiation Effects&Defects in Solids, vol. 171, no. 7-8, pp. 651-657, 2016.
  • [37] E. Aras, O. Karatas, Y. Meric, H. K. Abbass, M. Birey, A. Kılıc, “EPR study of γ-irradiated cholesteryl methyl carbonate”, Radiation Effects&Defects in Solids, vol. 169, no. 9, pp. 754-758, 2014.
  • [38] O. Karatas, Y. Ceylan, “X-band EPR studies of gamma irradiated a new isoquinolıne sulfonamide: C17H20BrNO3S”, Konya Journal of Engineering Sciences, vol. 8, pp. 46-52, 2020.
  • [39] Y. Ceylan, K. Usta, A. Usta, E. Maltas, S. Yildiz, “Evaluation of Antioxidant Activity, Phytochemicals and ESR Analysis of Lavandula Stoechas”, Acta Physica Polonica A, vol. 128, pp. B-483-B-488, 2015.
  • [40] Y. Ceylan, A. Usta, K. Usta, F. Cobankara Kont, C. Yildirim, M. Birey, “In vitro analysis of AHPlus and MM-Seal by ESR and thermoanalytical methods”, Acta Physica Polonica A, vol. 128, pp. B-479 -B-482, 2015.
  • [41] Q. Fang, X. Ding, X. Wu, L. Jiang, “Synthesis and characterization of a novel functional monomer containing two allylphenoxy groups and one S-triazine ring and the properties of its copolymer with 4,4′-bismaleimidodiphenylmethane (BMDPM), Polymer, vol. 42, pp. 7595-7602, 2001.
  • [42] R. Ragno, S. Simeoni, S. Castellano, C. Vicidomini, A. Mai, A. Caroli, A. Tramontano, C. Bonaccini, P. Trojer, I. Bauer, G. Brosch, G. Sbardella, “Small molecule inhibitors of histone arginine methyltransferases: Homology modeling, molecular docking, binding mode analysis, and biological evaluations”, Journal of Medicinal Chemistry, vol. 50, pp. 1241-1253, 2007.
  • [43] S. F. Teng, K. Sproule, A. Husain, C. R. Lowe, “Affinity chromatography on immobilized biomimetic ligands synthesis, immobiliztion and chromatographic assessment of an immunoglobulin G-binding ligand”, Journal of Chromatography B, vol. 740, pp. 1-15, 2000.
  • [44] X. Wang, S. Ma, D. Sun, S. Parkin, H. Zhou, “A Mesoporous Metal−Organic Framework with Permanent Porosity”, Journal of the American Chemical Society, vol. 128, pp. 16474-16475, 2006.
  • [45] K. A. Kolmakov, “An efficient, “green” approach to aryl amination of cyanuric chloride using acetic acid as solvent”, Journal of Heterocyclic Chemistry, vol. 45, no. 2, pp. 533-539, 2008.
  • [46] L. Bruun, C. Koch, M. H. Jakopsen, B. Pedersen, M. Christiansen, Aamand, “Characterization of monoclonal antibodies raised against different structures belonging to the s-triazine group of herbicides”, Journal of Analytica Chimica Acta, vol. 436, pp. 87-101, 2001.
  • [47] Z. E. Koc, S. Uysal, “Synthesis and characterization of dendrimeric bridged salen/saloph complexes and investigation of their magnetic and thermal behaviors”, Helvetica Chimica Acta, vol. 93, pp. 910-919, 2010.

2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis

Year 2022, Volume: 26 Issue: 6, 1170 - 1179, 31.12.2022
https://doi.org/10.16984/saufenbilder.1135112

Abstract

A significant group of compounds arise from substituted s-triazine derivatives that have tripodal heterocyclic compound. Compounds classified as heterocyclic possible created the largest and most diverse family of organic compounds. In this study, we reported that a new template has been syntheses from a cyanuric chloride and its diamine derivative. The desired triamine a tripodal 2, 4, 6-tris (p-aminoaanilino)-1, 3, 5-triazine (C21H21N9), called to be TRIPOD, has been obtained from cyanuric chloride with 3 eq of p-phenylenediamine reaction in acetone. After synthesis, TRIPOD sample which was polycrystal form was irradiated by cobalt-gamma source. The electron paramagnetic resonance spectra of TRIPOD were recorded using X-band EPR spectrometer at room temperature in three axes (x, y, z) which are perpendicular at 10 intervals. The EPR spectrum was simulated using computer program and by using the spectrum. The radical structure was determined in the sample.

References

  • [1] S. Singh, M. K. Mandal, A. Masih, A. Saha, S. K. Ghosh, H. R. Bhat, U. P. Singh, “1,3,5-Triazine: A versatile pharmacophore with diverse biological activities”, Archiv der Pharmazie, vol. 354, no. 6, pp. 1-23, 2021.
  • [2] D. Maliszewski, A. Wrobel, B. Kolensinska, J. Fraczyk, D. Drozdowska, “1,3,5-Triazine Nitrogen Mustards with Different Peptide Group as Innovative Candidates for AChE and BACE1 Inhibitors”, Molecules, vol. 26, pp. 3942, 2021.
  • [3] F. Li, C. Wang, Y. Xu, Z. Zhao, J. Su, C. Luo, Y. Ning, Z. Li, C. Li, L. Wang, “Efficient synthesis of unsymmetrical trisubstituted 1,3,5-triazines catalyzed by hemoglobin”, Molecular Catalysis, vol. 505, pp. 111519, 2021.
  • [4] K. Kaminska, J. Ziemb, J. Ner, J. S. Schwed, D. Łazewska, M. Wiecek, T. Karcz, A. Olejarz, G. Latacz, K. Kuder, T. Kottke, M. Zygmunt, J. Sapa, J. K. Wojciechowska, H. Stark, K. K.-Kononowicz, K., “(2-Arylethenyl)-1,3,5-triazin-2-amines as novel histamine H4 receptor ligands”, European Journal of Medicinal Chemistry, vol. 103, pp. 238–251, 2015.
  • [5] W. Huang, W. Zheng, D. J. Urban, J. Inglese, E. Sidransky, C. P. Austin, C. J., Thomas, “N4-phenyl modifications of N2-(2-hydroxyl) ethyl-6-(pyrrolidin-1-yl)-1,3,5-triazine-2,4-diamines enhance glucocerebrosidase inhibition by small molecules with potential as chemical chaperones for Gaucher disease”, Bioorganic & Medicinal Chemistry Letters, vol. 17, pp. 5783–5789, 2007.
  • [6] K. Iikubo, Y. Kondoh, I. Shimada, T. Matsuya, K. Mori, Y. Ueno, M. Okada, “2. Discovery of N-{2-Methoxy-4-[4-(4-methylpiperazin-1-yl) piperidin-1-yl] phenyl}-N'-[2-(propane-2-sulfonyl) phenyl]-1,3,5-triazine-2,4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor”, Chemical and Pharmaceutical Bulletin, vol. 66, pp. 251–262, 2018.
  • [7] K. Kaitoh, A. Nakatsu, S. Mori, H. Kagechika, Y. Hashimoto, S. Fujii, “Design, Synthesis and Biological Evaluation of Novel Nonsteroidal Progesterone Receptor Antagonists Based on Phenylamino-1,3,5-triazine Scaffold”, Chemical and Pharmaceutical Bulletin, vol. 67, pp. 566–575, 2019.
  • [8] N. Lolak, S. Akocak, S. Bua, R. K. K. Sanku, C. T. Supuran, “Discovery of New Ureido Benzenesulfonamides Incorporating 1,3,5-Triazine Moieties as Carbonic Anhydrase I, Ii, Ix and Xii Inhibitors”, Bioorganic & Medicinal Chemistry, vol. 27, no. 8, pp. 1588–1594, 2019.
  • [9] Z. Tber, M. Wartenberg, J. E. Jacques, V. Roy, F. Lecaille, D. Warszycki, A. J. Bojarski, G. Lalmanach, L. A. Agrofoglio, “Selective inhibition of human cathepsin S by 2,4,6-trisubstituted 1,3,5-triazine analogs”, Bioorganic & Medicinal Chemistry, vol. 26, pp. 4310–4319, 2018.
  • [10] P. Singh, S. Kaur, P. Kumari, B. Kaur, M. Kaur, G. Singh, R. Bhatti, M. Bhatti, “Ailoring the Substitution Pattern on 1,3,5-Triazine for Targeting Cyclooxygenase-2: Discovery and Structure–Activity Relationship of Triazine–4-Aminophenylmorpholin-3-one Hybrids that Reverse Algesia and Inflammation in Swiss Albino Mice”, Journal of Medicinal Chemistry, vol. 61, pp. 7929–7941, 2018.
  • [11] A. V. Shastin, A. O. Petrov, G. V. Malkov, T. N. Gavrishova, “Synthesis of azidopropargylamino-substituted 1,3,5-triazines- novel monomers for the production of energetic polymers”, Chemistry of Heterocyclic Compounds, vol. 57, no. 7/8, pp. 866-870, 2021.
  • [12] E. M. Smolin, “s-Triazine and Derivatives”, Rapoport L., Interscience Publishers, New York, 1959.
  • [13] Bartholomew, D., Pergamon, Oxford, 1996.
  • [14] D. L. Comins, O. Connor, “Advances in Heterocyclic Chemistry”, A. R. Katritzky (Ed.), Academic, New York, 1988.
  • [15] G. Giacomelli, A. Porcheddu, L. D. Luca, “[1,3,5]-Triazine: A Versatile Heterocycle in Current Applications of Organic Chemistry”, Current Organic Chemistry, vol. 8, pp. 1497-1519, 2004.
  • [16] R. R. Gupta, M. Kumar, V. Gupta, vol. 2, SpringerVerlag, Berlin, Heidelberg, New York, 1998.
  • [17] R. R. Gupta, M. Kumar, V. Gupta, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
  • [18] G. Blonty, Tetrahedron, “Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis”, vol. 62, no. 41, pp. 9507-9522, 2006.
  • [19] E. Hollink, E. E. Simanek, D. E. Bergbreiter, “Strategies for protecting and manipulating triazine derivatives”, Tetrahedron Letters, vol. 46, pp. 2005-2008, 2005.
  • [20] T. Carofiglio, A. Varotto, U. Tonellato, “One-Pot synthesis of cyanuric acid-bridged porphyrin−porphyrin dyads”, The Journal of Organic Chemistry, vol. 69, no. 23, pp. 8121-8124, 2004.
  • [21] T. J. Mooibroek, P. Gamez, “The s-triazine ring, a remarkable unit to generate supramolecular interactions”, Inorganica Chimica Acta, vol. 360, no.1, 381-404, 2007.
  • [22] D. P. Hoog, P. Gamez, W. L. Dressen, J. Reedijk, “New polydentate and polynucleating N-donor ligands from amines and 2,4,6-trichloro-1,3,5-triazine”, Tetrahedron Letters, vol. 43, pp. 6783-6786, 2002.
  • [23] Z. E. Koc, “Complexes of iron (III) and chromium (III) salen and salophen Schiff bases with bridging 1, 3, 5 triazine derived multidirectional ligands”, Journal of Heterocyclic Chemistry, vol. 48, no. 4, pp. 769-775, 2011.
  • [24] A. Usta, H. C. Vural, B. Asık, K. Usta, “Screening of free radical formation in crystals of guanosine by ESR study”, Journal of Molecular Structure, vol. 1004, no. 1-3, pp. 292-295, 2011.
  • [25] D. Chatterjee, A. Mahata, “Evidence of superoxide radical formation in the photodegradation of pesticide on the dye modified TiO2 surfaceusing visible light”, Journal of Photochemistry and Photobiology A, vol. 165, pp. 19-23, 2004.
  • [26] A. Usta, H. C. Vural, K. Usta, E. Aras, Y. Ceylan, A. Ozmen, “An EPR study on cytosine irradiated”, Journal of Physical Organic Chemistry, vol. 24, pp. 635-639, 2011.
  • [27] N. D. Yordanov, K. Aleksieva, “EPR studies on gamma-irradiated snails hard tissues”, Radiation Physics and Chemistry, vol. 78, pp. 213-216, 2019.
  • [28] G. Onay, R. Sahin, “Optical properties of the electron and gamma-ray irradiated soda-lime glass samples”, Sakarya University Journal of Science, 22(6), 1518-1523, 2018.
  • [29] A. Kahraman, E. Yılmaz, “Evaluation of the pre-irradiation electrical characteristics of the RadFET dosimeters with diverse gate oxides by TCAD simulation program”, Sakarya University Journal of Science, 21(6), 1258-1265, 2017.
  • [30] K. Usta, O. O. Karakus., A. Usta, H. Deligoz, “Identification of radiation-induced radical structure in azocalix [4] arene: an EPR study”, Magnetic Resonance in Chemistry, vol. 51, pp. 671-675, 2013.
  • [31] Y. Ceylan, K. Usta, A. Kunduracioglu, A. Usta, B. Cetinkaya, “Identification of radical structures on 1-pentamethylbenzyl-3-ethylimidazoliumsilver(I)bromide and1,3-bis(pentamethylbenzyl)-4,5 dimethylbenzimidazoliumsilver(I)bromide exposed to gamma rays: an EPR study, Magnetic Resonance in Chemistry, vol. 54, pp. 864–869, 2016.
  • [32] K. Usta, Y. Ceylan, A. Usta, N. Ceylan, E. Aras, “An EPR Study on Radiation-Induced 2-(piperidin-1-ylmethyl) phenol Single Crystal”, Acta Physica Polonica A, vol. 130, no. 1, pp. 178-180, 2016.
  • [33] Y. Ceylan, K. Usta, N. Ceylan, A. Usta, Y. Koc, “Comparative Study of Influences of Gamma Rays on Calix [4] Arene and 25,27-di(4-Nitrobenzyl)-26,28-Dihydroxycalix [4] Arene: EPR Study”, Acta Physica Polonica A, vol. 132, pp. 1211-1213, 2017.
  • [34] Ö. Aybirdi, H. Necefoğlu, “Metal (II) p-dimetilaminobenzoatların izonikotinamid komplekslerinin sentezi, spektroskopik ve termal karakterizasyonu”, Sakarya University Journal of Science, 20(2), 167-175, 2016.
  • [35] O. Karatas, E. Aras, “Electron paramagnetic resonance of gamma-irradiated single crystals of ethan-1,2 disulfonic acid disodium”, Journal of Molecular Structure, vol. 1027, pp. 49-52, 2012.
  • [36] O. Karatas, E. Aras, A. H. Karadag, Y. Islek, “Electron paramagnetic resonance study of gamma (γ)-irradiated methyl 4-methyl benzoate (C9H10O2)”, Radiation Effects&Defects in Solids, vol. 171, no. 7-8, pp. 651-657, 2016.
  • [37] E. Aras, O. Karatas, Y. Meric, H. K. Abbass, M. Birey, A. Kılıc, “EPR study of γ-irradiated cholesteryl methyl carbonate”, Radiation Effects&Defects in Solids, vol. 169, no. 9, pp. 754-758, 2014.
  • [38] O. Karatas, Y. Ceylan, “X-band EPR studies of gamma irradiated a new isoquinolıne sulfonamide: C17H20BrNO3S”, Konya Journal of Engineering Sciences, vol. 8, pp. 46-52, 2020.
  • [39] Y. Ceylan, K. Usta, A. Usta, E. Maltas, S. Yildiz, “Evaluation of Antioxidant Activity, Phytochemicals and ESR Analysis of Lavandula Stoechas”, Acta Physica Polonica A, vol. 128, pp. B-483-B-488, 2015.
  • [40] Y. Ceylan, A. Usta, K. Usta, F. Cobankara Kont, C. Yildirim, M. Birey, “In vitro analysis of AHPlus and MM-Seal by ESR and thermoanalytical methods”, Acta Physica Polonica A, vol. 128, pp. B-479 -B-482, 2015.
  • [41] Q. Fang, X. Ding, X. Wu, L. Jiang, “Synthesis and characterization of a novel functional monomer containing two allylphenoxy groups and one S-triazine ring and the properties of its copolymer with 4,4′-bismaleimidodiphenylmethane (BMDPM), Polymer, vol. 42, pp. 7595-7602, 2001.
  • [42] R. Ragno, S. Simeoni, S. Castellano, C. Vicidomini, A. Mai, A. Caroli, A. Tramontano, C. Bonaccini, P. Trojer, I. Bauer, G. Brosch, G. Sbardella, “Small molecule inhibitors of histone arginine methyltransferases: Homology modeling, molecular docking, binding mode analysis, and biological evaluations”, Journal of Medicinal Chemistry, vol. 50, pp. 1241-1253, 2007.
  • [43] S. F. Teng, K. Sproule, A. Husain, C. R. Lowe, “Affinity chromatography on immobilized biomimetic ligands synthesis, immobiliztion and chromatographic assessment of an immunoglobulin G-binding ligand”, Journal of Chromatography B, vol. 740, pp. 1-15, 2000.
  • [44] X. Wang, S. Ma, D. Sun, S. Parkin, H. Zhou, “A Mesoporous Metal−Organic Framework with Permanent Porosity”, Journal of the American Chemical Society, vol. 128, pp. 16474-16475, 2006.
  • [45] K. A. Kolmakov, “An efficient, “green” approach to aryl amination of cyanuric chloride using acetic acid as solvent”, Journal of Heterocyclic Chemistry, vol. 45, no. 2, pp. 533-539, 2008.
  • [46] L. Bruun, C. Koch, M. H. Jakopsen, B. Pedersen, M. Christiansen, Aamand, “Characterization of monoclonal antibodies raised against different structures belonging to the s-triazine group of herbicides”, Journal of Analytica Chimica Acta, vol. 436, pp. 87-101, 2001.
  • [47] Z. E. Koc, S. Uysal, “Synthesis and characterization of dendrimeric bridged salen/saloph complexes and investigation of their magnetic and thermal behaviors”, Helvetica Chimica Acta, vol. 93, pp. 910-919, 2010.
There are 47 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Chemical Engineering
Journal Section Research Articles
Authors

Özgül Karataş 0000-0003-3848-5800

Yusuf Ceylan 0000-0003-0588-1188

Ziya Erdem Koç 0000-0002-5875-9779

Publication Date December 31, 2022
Submission Date June 24, 2022
Acceptance Date October 10, 2022
Published in Issue Year 2022 Volume: 26 Issue: 6

Cite

APA Karataş, Ö., Ceylan, Y., & Koç, Z. E. (2022). 2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis. Sakarya University Journal of Science, 26(6), 1170-1179. https://doi.org/10.16984/saufenbilder.1135112
AMA Karataş Ö, Ceylan Y, Koç ZE. 2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis. SAUJS. December 2022;26(6):1170-1179. doi:10.16984/saufenbilder.1135112
Chicago Karataş, Özgül, Yusuf Ceylan, and Ziya Erdem Koç. “2,4,6-Tris(p-Aminoanilino)-1,3,5-Triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis”. Sakarya University Journal of Science 26, no. 6 (December 2022): 1170-79. https://doi.org/10.16984/saufenbilder.1135112.
EndNote Karataş Ö, Ceylan Y, Koç ZE (December 1, 2022) 2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis. Sakarya University Journal of Science 26 6 1170–1179.
IEEE Ö. Karataş, Y. Ceylan, and Z. E. Koç, “2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis”, SAUJS, vol. 26, no. 6, pp. 1170–1179, 2022, doi: 10.16984/saufenbilder.1135112.
ISNAD Karataş, Özgül et al. “2,4,6-Tris(p-Aminoanilino)-1,3,5-Triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis”. Sakarya University Journal of Science 26/6 (December 2022), 1170-1179. https://doi.org/10.16984/saufenbilder.1135112.
JAMA Karataş Ö, Ceylan Y, Koç ZE. 2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis. SAUJS. 2022;26:1170–1179.
MLA Karataş, Özgül et al. “2,4,6-Tris(p-Aminoanilino)-1,3,5-Triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis”. Sakarya University Journal of Science, vol. 26, no. 6, 2022, pp. 1170-9, doi:10.16984/saufenbilder.1135112.
Vancouver Karataş Ö, Ceylan Y, Koç ZE. 2,4,6-Tris(p-aminoanilino)-1,3,5-triazine: Synthesis and Electron Paramagnetic Resonance (EPR) Analysis. SAUJS. 2022;26(6):1170-9.