Research Article
BibTex RIS Cite

Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves

Year 2023, Volume: 27 Issue: 1, 22 - 38, 28.02.2023
https://doi.org/10.16984/saufenbilder.1132730

Abstract

The antioxidant defense system of the medicinal plant Raphanus sativus L. tuber root in terms of certain antioxidant enzymes (ascorbat peroxidase, glutathion reductase, catalase, superoxide dismutase) and lipid peroxidation against gray mold disease caused by Botrytis cinerea fungus on Vicia faba L. (bean) leaves was analyzed spectrophotometrically. V. faba plants were grown from seed under controlled conditions. A spore suspension of 105 spores/ml of B. cinerea was prepared. The leaves of V. faba were treated with 1-) only distilled water, 2-)only DMSO, 3-) only B. cinerea (positive control), 4-) only extract applications (distilled water, ethanol and methanol extract),5-) B. cinerea treatment after extract applications (extract:fungus). The leaves of V. faba were harvested 24 and 48 hours after the applications. Analyzes of the supernatants obtained from the extracts were performed spectrophotometrically. It has been revealed that the activity of all investigated enzymes generally increased in the extract:fungus application groups compared to the fungus application group. It was determined that the application of fungus alone caused an increase in the activity of enzymes compared to application groups other than the extract:fungus application groups. It was observed that there was an increase in lipid peroxidation (MDA) only in the fungus application group compared to all extract:fungus application groups except 10mg/ml distilled water extract:fungus treatment. As a result of the research, it was determined that the extract:fungus applications generally increased the antioxidant enzyme activity levels and decreased the MDA content when compared to the negative control and positive control groups. In extract:fungus applications, enzyme activities were obtained from 10mg/ml distilled water extract:fungus, 10mg/ml EtOH extract:fungus, 10mg/ml MeOH extract:fungus applications. From this point of view, it can be stated that R. sativus distilled water, ethanol and methanol extracts generally give an increased antioxidant defense response in V. faba leaves compared to B. cinerea inoculation alone.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi

Project Number

FBA-2020-3165

Thanks

This research article was produced from the project numbered FBA-2020-3165 supported by Canakkale Onsekiz Mart University Scientific Research Projects Commission.

References

  • [1] L. A. Weston, S. O. Duke. “Weed and crop allelopathy,” Critical Reviews in Plant Sciences, vol. 22, no. 3, pp. 67–389, 2003.
  • [2] J. Patykowski, H. Urbanek. “Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea,” Journal of Phytopathology, vol. 151, no. 3, pp. 153-161, 2003.
  • [3] V. Alexieva, S. Ivanov, I. Sergiev, E. Karanov.“Interaction between stresses,” Bulgarian Journal of Plant Physiology, vol. 29, no. 3-4, pp. 1-17, 2003.
  • [4] A. Droby, A. Lichter. “Post-harvest Botrytis infection: etiology, development and management,” in Botrytis: Biology, Pathology and Control. (Elad Y., Williamson, B., Tudzynski P., Delen, N., eds), pp. 349–367. Dordrecht, The Netherlands: Kluwer Academic Press. 2004.
  • [5] N. Ben-Shalom, R. Ardia, R. Pinto, C. Akib, E. Fallik. “Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan,” Crop Protection, vol. 22, no. 2, pp. 285-290, 2003.
  • [6] E. Kuzniak, M. Sklodowska. “Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants,” Planta, vol. 222, no. 1, pp. 192–200, 2005.
  • [7] M. Z. Rahman, Y. Honda, S. Z. Islam, S. “Arase. effect of metabolic inhibitors on red light-induced restance of broad bean (Vicia faba L.) against Botrytis cinerea,” Journal of Phytopathology, vol. 150, pp. 463-468, 2002.
  • [8] D. J. Daferera, N. Z. Basil, M. G. Polissiou. “The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis sub sp. Michiganensis,” Crop Protection, vol. 22, pp. 39-44, 2002.
  • [9] A. E. Dereboylu, N. Tort. “Bazı aktivatör ve fungisit uygulamalarının Cucumis sativus L.(hıyar) bitkisinde verim-kalite üzerine etkisi,” Fen Bilimleri Dergisi, vol. 31, no. 1, pp. 30-42, 2010.
  • [10] R. M. P. Gutiérrez, R. L. Perez. “Raphanus sativus (Radish): Their Chemistry and Biology,” The Scientific World Journal, vol. 4, pp. 811–837, 2004.
  • [11] A. Lugasi, A. Blazovics, K. Hagymasi, I. Kocsis, A. Kery. “Antioxidant effect of squeezed juice from black radish (Raphanus sativus L. var niger) in alimentary hyperlipidaemia in rats,” Phytotherapy Research, vol. 19, pp. 587–591, 2005.
  • [12] R. Goyeneche, S. Roura, A. Ponce, A. Vega-Gálvez, I. Quispe-Fuentes, E. Uribe, K. Di Scala. “Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots,” Journal of Functional Foods, vol. 16, no. 2015, pp. 256–264, 2015.
  • [13] L. H. Levine, P. A. Bisbee, J. T. Richards, M. N. Birmele, R. L. Prior, M. Perchonok, M. Dixon, N. C. Yorio, G. W. Stutte, R. M. Wheeler. “Quality characteristics of the radish grown under reduced atmospheric pressure,” Advances in Space Research, vol. 41, no. 5, pp. 754–762, 2008.
  • [14] Z. Özceylan, C. Akı. “Effects of Ginger Extracts on Total Protein Amount and Peroxidase Activity in Solanum lycopersicum L.,” Journal of Scientific Perspectives, vol. 4, no. 2, pp. 169-176, 2020.
  • [15] M. M. Bradford. “A Rapid and Sensitive Method for the Quantitation of Microgram Quantites of Protein Utilizing The Principle of Protein Dye Binding,” Analytical Biochemistry, vol. 72, pp. 248-254, 1976.
  • [16] R. K. V. Madhava, T. V. S. Sresty. “Antioxidative Parameters in The Seedlings of Pigeonpea (Cajanus cajan L. Millspaugh) in Response to Zn and Ni Stresses,” Plant Science, vol. 157, pp. 113-128, 2000.
  • [17] Y. Nakano, K. Asada K. “Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts,” Plant and Cell Physiology, vol. 22, no. 5, pp. 867-880, 1981.
  • [18] N. Bergmeyer N. “Methoden Der Enzymatischen Analyse,” In: Vol 1 Akademie Verlag, Berlin: 636-647, 1970.
  • [19] C. H. Foyer, B. Halliwell. “Presence of Glutathione and Glutathione Reductase in Chloroplasts: A Proposed Role in Ascorbic Acid Metabolism,” Planta, vol. 133, pp. 21-25, 1976.
  • [20] C. Beauchampand I. Fridovich. “Superoxide Dismutase: Improved Assay and Appilicable to Acrylamid Gels,” Analytical Biochemistry., vol. 44, pp. 276-287, 1971.
  • [21] N. Giannipolities, S. K. Ries. “Superoxide Dismutase: I. Occurance in Higher Plants,” Plant Physiology, vol. 59, pp. 309-314, 1977.
  • [22] J. Gholamnezhad, F. Sanjarian, E. M. Goltapeh, N. Safaei, K. H. Razavi K H. “Study of defense genes expression profile pattern of wheat in response to infection by Mycosphaerella graminicola,” Iranian Journal of Science and Technology, vol. 8, pp. 43–55, 2016.
  • [23] S. Demirbaş, O. Acar. “Physiological and biochemical defense reactions of Arabidopsis thaliana to Phelipanche ramosa infection and salt stress,” Fresenius Environmental Bulletin, vol. 26, no. 3, pp. 2275-2282, 2017.
  • [24] O. Acar, I. Türkan, F. Özdemir.” Superoxide dismutase and peroxidase activities in drought-sensitive and resistant barley (Hordeum vulgare L.) varieties,” Acta Physiologiae Plantarum, vol. 23, no. 3, pp. 351-356, 2001.
  • [25] C. Garcı́a-Limones, A. Hervás, J. A. Navas-Cortés, R. M. Jiménez-Dı́az, M. Tena. “Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. Ciceris,” Physiological and Molecular Plant Pathology, vol. 61, npo. 6, pp. 325-337, 2002.
  • [26] R. M. Farag Hanaa, Z. A. Abdou, D. A. Salama, M. A. R. Ibrahim, H. A. M. Sror. “Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes,” Annals of Agricultural Sciences, vol. 56, no. 1, pp. 1-7, 2011.
  • [27] P. Y. Werrie, B. Durenne, P. Delaplace, M. L. Fauconnier. “Phytotoxicity of essential oils: opportunities and constraints for the development of biopesticides,” Foods, vol. 9, no. 9, pp. 1291, 2020.
  • [28] U. Małolepsza, S. Rozalska. “Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato,” Plant Physiology and Biochemistry, vol. 43, no. 6, pp. 623–635, 2005.
  • [29] E. Pietrowska, S. Różalska, A. Kaźmierczak, J. Nawrocka, U. Małolepsza. “Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures Botrytis cinerea interaction,” Protoplasma, vol. 252, no. 1, pp. 307–319, 2015.
  • [30] S. Karakuş, Ö. Atıcı, C. Köse, İ. Aydin. “Nepeta meyeri essential oil ameliorates fungal infection and the antioxidant response in grapevines (Vitis vinifera) infections by gray mold (Botrytis cinerea),” Acta Physiologiae Plantarum, vol. 43, no. 12, pp. 1-11, 2021.
  • [31] E. Kuzniak, M. Sklodowska. “Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea,” Plant Science, vol. 160, no. 4, pp. 723–731, 2001.
  • [32] J. Gholamnezhad. “Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea,” Journal of Integrative Agriculture, vol. 18, no. 1, pp. 115-123, 2019.
  • [33] U. Małolepsza, H. Urbanek. “The oxidants and antioxidant enzymes in tomato leaves treated with o-hydroxyethylorutin and infected with Botrytis cinerea,” The European Journal of Plant Pathology, vol. 106, no. 7, pp. 657–665, 2000.
  • [34] A. Kamara, E. El-Argawy, A. E. Korany, G. Amer, G. “Potential of certain cultivars and resistance inducers to control gray mould (Botrytis cinerea) of pepper (Capsicum annuum L.),” African Journal of Microbiology Research, vol. 10, no. 45, pp. 1926-1937, 2016.
  • [35] L. J. Ma, Y.Y. Li, L. L. Wang, X. M. Li, T. Liu, T., N. “Bu. Germination and Physiological Response of Wheat (Triticum aestivum) to Pre-soaking with Oligochitosan,” International Journal of Agriculture & Biology, vol. 16, no. 4, 2014.
  • [36] U. Małolepsza, S. Rozalska. “Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato,” Plant Physiology and Biochemistry,vol. 43, no. 6, pp. 623–635, 2005.
  • [37] M. Libik-Koniecznya, E. Surówkaa, E. Kuz´niakb, M. Nosekc, Z. Miszalski. “Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant,” Journal of Plant Physiology, 168 (2011): 1052–1059, 2011.
  • [38] A. S. Derbalah, G. A. El-Kot, Y. M. Hafez, A. F. Omar. “Non-traditional Methods to Control Choclate Spot of Faba bean Caused by Botrytis fabae Sard under Greenhouse Conditions,” Egyptian Journal of Biological Pest Control, vol. 23, no. 1, pp. 137-144, 2013.
  • [39] N. Çördük, N. Akıncı, N. Kaya, G. Yücel, C. Akı. “Effects of dodine on total protein content and peroxidase activity in Vicia faba L.,” Sakarya University Journal of Science, vol. 20, no. 3, pp. 627-633, 2016.
  • [40] A. Doğru, N. E. Bayram, N. E. “A study on drought stress tolerance in some maize (Zea mays L.) cultivars,” Sakarya University Journal of Science, vol. 20, no. 3, pp. 509-519, 2016.
  • [41] N. Şahin, S. Şahin Bölükbaşı. “Yeni rutenyum-azol komplekslerinin sentezi ve antioksidan özellikleri,” Sakarya University Journal of Science, vol. 2, no. 6, pp. 1121-1126, 2017.
  • [42] A. Doğru, M. Y. Kaçar. “A preliminary study on salt tolerance of some barley genotypes,” Sakarya University Journal of Science, vol. 23, no. 5, pp. 755-762, 2019.
  • [43] E. Güneş, H.F. Nizamlıoğlu, Z. Bulut, M. Nizamlıoğlu. “An in Vivo Study for the Use of Lupinus Albus (Fabaceae) in Drosophila Melanogaster Diet,” Sakarya University Journal of Science, vol. 24, no. 6, pp. 1344-1351, 2020.
  • [44] H. D. Tepe, A. Uğurlu, İ. Yazgan. “Determination of Phenolic Compounds, Organic Volatile Molecules and Anti-Cancer Properties in Inula Viscosa L., Viscum Album L. and Raphanus Sativus L.,” Sakarya University Journal of Science, vol. 25, no. 3, pp. 647-662, 2021.
  • [45] G. Alak, M. Atamanalp, E. M. Kocaman, A. Uçar. “Karboksinin gökkuşağı alabalıklarında (Oncorhynchus mykiss) gulutatyon redüktaz enzim aktivitesi üzerine etkisi,” Sakarya University Journal of Science, vol. 17, no. 1, pp. 71-74, 2013.
  • [46] F. Oguz., Ç. Ç. Pulat, Ç. Ç., S. İlhan, H. Atmaca. “GC-MS Analysis and Potential Apoptotic Effect of Paliurus spina-christi Mill. Leaf and Flower Extracts against Breast Cancer Cells,” Sakarya University Journal of Science, vol. 26, no. 2, pp. 357-364, 2022.
  • [47] Z. Denli, G. Arabacı. “Kiwano (Cucumis metuliferus) bitkisindeki peroksidaz enzimleri üzerine amino asit etkisinin incelenmesi,” Sakarya University Journal of Science, vol. 18, no. 2, pp. 105-109, 2014.
  • [48] N. Kanat, S. Akdemir, S. “Bakterilerde glutatyon ve önemi,” Sakarya University Journal of Science, vol. 18, no. 2, pp. 111-117, 2014.
  • [49] E.H. Alıcı, G. Arabacı. “Kaldirik (Trachystemon orientalis) bitkisi Polifenol oksidaz enzimi üzerine metallerin etkisi,” Sakarya University Journal of Science, vol. 17, no. 3, pp. 399-405, 2013.
  • [50] Ö. Barım-Öz, M. Karatepe. “Farklı muhafaza sıcaklığı ve sürelerinin Kerevit (Astacus leptodactylus Esch. 1823) filetosundaki vitamin A, β-karoten, astaksantin ve lipid peroksidasyon seviyesi üzerine etkisi,” Sakarya University Journal of Science, vol. 21, no. 6, pp. 1537-1543, 2017.
  • [51] S. Metlek, H. Akman, I. Bayraklı. “Metabolism Determination By Soft Computing Methods From Breath Molecules,” Sakarya University Journal of Science, vol. 26, no. 2, pp. 429-437, 2022.
Year 2023, Volume: 27 Issue: 1, 22 - 38, 28.02.2023
https://doi.org/10.16984/saufenbilder.1132730

Abstract

Project Number

FBA-2020-3165

References

  • [1] L. A. Weston, S. O. Duke. “Weed and crop allelopathy,” Critical Reviews in Plant Sciences, vol. 22, no. 3, pp. 67–389, 2003.
  • [2] J. Patykowski, H. Urbanek. “Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea,” Journal of Phytopathology, vol. 151, no. 3, pp. 153-161, 2003.
  • [3] V. Alexieva, S. Ivanov, I. Sergiev, E. Karanov.“Interaction between stresses,” Bulgarian Journal of Plant Physiology, vol. 29, no. 3-4, pp. 1-17, 2003.
  • [4] A. Droby, A. Lichter. “Post-harvest Botrytis infection: etiology, development and management,” in Botrytis: Biology, Pathology and Control. (Elad Y., Williamson, B., Tudzynski P., Delen, N., eds), pp. 349–367. Dordrecht, The Netherlands: Kluwer Academic Press. 2004.
  • [5] N. Ben-Shalom, R. Ardia, R. Pinto, C. Akib, E. Fallik. “Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan,” Crop Protection, vol. 22, no. 2, pp. 285-290, 2003.
  • [6] E. Kuzniak, M. Sklodowska. “Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants,” Planta, vol. 222, no. 1, pp. 192–200, 2005.
  • [7] M. Z. Rahman, Y. Honda, S. Z. Islam, S. “Arase. effect of metabolic inhibitors on red light-induced restance of broad bean (Vicia faba L.) against Botrytis cinerea,” Journal of Phytopathology, vol. 150, pp. 463-468, 2002.
  • [8] D. J. Daferera, N. Z. Basil, M. G. Polissiou. “The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis sub sp. Michiganensis,” Crop Protection, vol. 22, pp. 39-44, 2002.
  • [9] A. E. Dereboylu, N. Tort. “Bazı aktivatör ve fungisit uygulamalarının Cucumis sativus L.(hıyar) bitkisinde verim-kalite üzerine etkisi,” Fen Bilimleri Dergisi, vol. 31, no. 1, pp. 30-42, 2010.
  • [10] R. M. P. Gutiérrez, R. L. Perez. “Raphanus sativus (Radish): Their Chemistry and Biology,” The Scientific World Journal, vol. 4, pp. 811–837, 2004.
  • [11] A. Lugasi, A. Blazovics, K. Hagymasi, I. Kocsis, A. Kery. “Antioxidant effect of squeezed juice from black radish (Raphanus sativus L. var niger) in alimentary hyperlipidaemia in rats,” Phytotherapy Research, vol. 19, pp. 587–591, 2005.
  • [12] R. Goyeneche, S. Roura, A. Ponce, A. Vega-Gálvez, I. Quispe-Fuentes, E. Uribe, K. Di Scala. “Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots,” Journal of Functional Foods, vol. 16, no. 2015, pp. 256–264, 2015.
  • [13] L. H. Levine, P. A. Bisbee, J. T. Richards, M. N. Birmele, R. L. Prior, M. Perchonok, M. Dixon, N. C. Yorio, G. W. Stutte, R. M. Wheeler. “Quality characteristics of the radish grown under reduced atmospheric pressure,” Advances in Space Research, vol. 41, no. 5, pp. 754–762, 2008.
  • [14] Z. Özceylan, C. Akı. “Effects of Ginger Extracts on Total Protein Amount and Peroxidase Activity in Solanum lycopersicum L.,” Journal of Scientific Perspectives, vol. 4, no. 2, pp. 169-176, 2020.
  • [15] M. M. Bradford. “A Rapid and Sensitive Method for the Quantitation of Microgram Quantites of Protein Utilizing The Principle of Protein Dye Binding,” Analytical Biochemistry, vol. 72, pp. 248-254, 1976.
  • [16] R. K. V. Madhava, T. V. S. Sresty. “Antioxidative Parameters in The Seedlings of Pigeonpea (Cajanus cajan L. Millspaugh) in Response to Zn and Ni Stresses,” Plant Science, vol. 157, pp. 113-128, 2000.
  • [17] Y. Nakano, K. Asada K. “Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts,” Plant and Cell Physiology, vol. 22, no. 5, pp. 867-880, 1981.
  • [18] N. Bergmeyer N. “Methoden Der Enzymatischen Analyse,” In: Vol 1 Akademie Verlag, Berlin: 636-647, 1970.
  • [19] C. H. Foyer, B. Halliwell. “Presence of Glutathione and Glutathione Reductase in Chloroplasts: A Proposed Role in Ascorbic Acid Metabolism,” Planta, vol. 133, pp. 21-25, 1976.
  • [20] C. Beauchampand I. Fridovich. “Superoxide Dismutase: Improved Assay and Appilicable to Acrylamid Gels,” Analytical Biochemistry., vol. 44, pp. 276-287, 1971.
  • [21] N. Giannipolities, S. K. Ries. “Superoxide Dismutase: I. Occurance in Higher Plants,” Plant Physiology, vol. 59, pp. 309-314, 1977.
  • [22] J. Gholamnezhad, F. Sanjarian, E. M. Goltapeh, N. Safaei, K. H. Razavi K H. “Study of defense genes expression profile pattern of wheat in response to infection by Mycosphaerella graminicola,” Iranian Journal of Science and Technology, vol. 8, pp. 43–55, 2016.
  • [23] S. Demirbaş, O. Acar. “Physiological and biochemical defense reactions of Arabidopsis thaliana to Phelipanche ramosa infection and salt stress,” Fresenius Environmental Bulletin, vol. 26, no. 3, pp. 2275-2282, 2017.
  • [24] O. Acar, I. Türkan, F. Özdemir.” Superoxide dismutase and peroxidase activities in drought-sensitive and resistant barley (Hordeum vulgare L.) varieties,” Acta Physiologiae Plantarum, vol. 23, no. 3, pp. 351-356, 2001.
  • [25] C. Garcı́a-Limones, A. Hervás, J. A. Navas-Cortés, R. M. Jiménez-Dı́az, M. Tena. “Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. Ciceris,” Physiological and Molecular Plant Pathology, vol. 61, npo. 6, pp. 325-337, 2002.
  • [26] R. M. Farag Hanaa, Z. A. Abdou, D. A. Salama, M. A. R. Ibrahim, H. A. M. Sror. “Effect of neem and willow aqueous extracts on fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes,” Annals of Agricultural Sciences, vol. 56, no. 1, pp. 1-7, 2011.
  • [27] P. Y. Werrie, B. Durenne, P. Delaplace, M. L. Fauconnier. “Phytotoxicity of essential oils: opportunities and constraints for the development of biopesticides,” Foods, vol. 9, no. 9, pp. 1291, 2020.
  • [28] U. Małolepsza, S. Rozalska. “Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato,” Plant Physiology and Biochemistry, vol. 43, no. 6, pp. 623–635, 2005.
  • [29] E. Pietrowska, S. Różalska, A. Kaźmierczak, J. Nawrocka, U. Małolepsza. “Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures Botrytis cinerea interaction,” Protoplasma, vol. 252, no. 1, pp. 307–319, 2015.
  • [30] S. Karakuş, Ö. Atıcı, C. Köse, İ. Aydin. “Nepeta meyeri essential oil ameliorates fungal infection and the antioxidant response in grapevines (Vitis vinifera) infections by gray mold (Botrytis cinerea),” Acta Physiologiae Plantarum, vol. 43, no. 12, pp. 1-11, 2021.
  • [31] E. Kuzniak, M. Sklodowska. “Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea,” Plant Science, vol. 160, no. 4, pp. 723–731, 2001.
  • [32] J. Gholamnezhad. “Effect of plant extracts on activity of some defense enzymes of apple fruit in interaction with Botrytis cinerea,” Journal of Integrative Agriculture, vol. 18, no. 1, pp. 115-123, 2019.
  • [33] U. Małolepsza, H. Urbanek. “The oxidants and antioxidant enzymes in tomato leaves treated with o-hydroxyethylorutin and infected with Botrytis cinerea,” The European Journal of Plant Pathology, vol. 106, no. 7, pp. 657–665, 2000.
  • [34] A. Kamara, E. El-Argawy, A. E. Korany, G. Amer, G. “Potential of certain cultivars and resistance inducers to control gray mould (Botrytis cinerea) of pepper (Capsicum annuum L.),” African Journal of Microbiology Research, vol. 10, no. 45, pp. 1926-1937, 2016.
  • [35] L. J. Ma, Y.Y. Li, L. L. Wang, X. M. Li, T. Liu, T., N. “Bu. Germination and Physiological Response of Wheat (Triticum aestivum) to Pre-soaking with Oligochitosan,” International Journal of Agriculture & Biology, vol. 16, no. 4, 2014.
  • [36] U. Małolepsza, S. Rozalska. “Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato,” Plant Physiology and Biochemistry,vol. 43, no. 6, pp. 623–635, 2005.
  • [37] M. Libik-Koniecznya, E. Surówkaa, E. Kuz´niakb, M. Nosekc, Z. Miszalski. “Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant,” Journal of Plant Physiology, 168 (2011): 1052–1059, 2011.
  • [38] A. S. Derbalah, G. A. El-Kot, Y. M. Hafez, A. F. Omar. “Non-traditional Methods to Control Choclate Spot of Faba bean Caused by Botrytis fabae Sard under Greenhouse Conditions,” Egyptian Journal of Biological Pest Control, vol. 23, no. 1, pp. 137-144, 2013.
  • [39] N. Çördük, N. Akıncı, N. Kaya, G. Yücel, C. Akı. “Effects of dodine on total protein content and peroxidase activity in Vicia faba L.,” Sakarya University Journal of Science, vol. 20, no. 3, pp. 627-633, 2016.
  • [40] A. Doğru, N. E. Bayram, N. E. “A study on drought stress tolerance in some maize (Zea mays L.) cultivars,” Sakarya University Journal of Science, vol. 20, no. 3, pp. 509-519, 2016.
  • [41] N. Şahin, S. Şahin Bölükbaşı. “Yeni rutenyum-azol komplekslerinin sentezi ve antioksidan özellikleri,” Sakarya University Journal of Science, vol. 2, no. 6, pp. 1121-1126, 2017.
  • [42] A. Doğru, M. Y. Kaçar. “A preliminary study on salt tolerance of some barley genotypes,” Sakarya University Journal of Science, vol. 23, no. 5, pp. 755-762, 2019.
  • [43] E. Güneş, H.F. Nizamlıoğlu, Z. Bulut, M. Nizamlıoğlu. “An in Vivo Study for the Use of Lupinus Albus (Fabaceae) in Drosophila Melanogaster Diet,” Sakarya University Journal of Science, vol. 24, no. 6, pp. 1344-1351, 2020.
  • [44] H. D. Tepe, A. Uğurlu, İ. Yazgan. “Determination of Phenolic Compounds, Organic Volatile Molecules and Anti-Cancer Properties in Inula Viscosa L., Viscum Album L. and Raphanus Sativus L.,” Sakarya University Journal of Science, vol. 25, no. 3, pp. 647-662, 2021.
  • [45] G. Alak, M. Atamanalp, E. M. Kocaman, A. Uçar. “Karboksinin gökkuşağı alabalıklarında (Oncorhynchus mykiss) gulutatyon redüktaz enzim aktivitesi üzerine etkisi,” Sakarya University Journal of Science, vol. 17, no. 1, pp. 71-74, 2013.
  • [46] F. Oguz., Ç. Ç. Pulat, Ç. Ç., S. İlhan, H. Atmaca. “GC-MS Analysis and Potential Apoptotic Effect of Paliurus spina-christi Mill. Leaf and Flower Extracts against Breast Cancer Cells,” Sakarya University Journal of Science, vol. 26, no. 2, pp. 357-364, 2022.
  • [47] Z. Denli, G. Arabacı. “Kiwano (Cucumis metuliferus) bitkisindeki peroksidaz enzimleri üzerine amino asit etkisinin incelenmesi,” Sakarya University Journal of Science, vol. 18, no. 2, pp. 105-109, 2014.
  • [48] N. Kanat, S. Akdemir, S. “Bakterilerde glutatyon ve önemi,” Sakarya University Journal of Science, vol. 18, no. 2, pp. 111-117, 2014.
  • [49] E.H. Alıcı, G. Arabacı. “Kaldirik (Trachystemon orientalis) bitkisi Polifenol oksidaz enzimi üzerine metallerin etkisi,” Sakarya University Journal of Science, vol. 17, no. 3, pp. 399-405, 2013.
  • [50] Ö. Barım-Öz, M. Karatepe. “Farklı muhafaza sıcaklığı ve sürelerinin Kerevit (Astacus leptodactylus Esch. 1823) filetosundaki vitamin A, β-karoten, astaksantin ve lipid peroksidasyon seviyesi üzerine etkisi,” Sakarya University Journal of Science, vol. 21, no. 6, pp. 1537-1543, 2017.
  • [51] S. Metlek, H. Akman, I. Bayraklı. “Metabolism Determination By Soft Computing Methods From Breath Molecules,” Sakarya University Journal of Science, vol. 26, no. 2, pp. 429-437, 2022.
There are 51 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Nergis Kaya 0000-0002-4206-1149

Tayfun Kaya 0000-0002-6808-3338

Soner Yiğit 0000-0002-2899-2246

Project Number FBA-2020-3165
Publication Date February 28, 2023
Submission Date June 18, 2022
Acceptance Date November 7, 2022
Published in Issue Year 2023 Volume: 27 Issue: 1

Cite

APA Kaya, N., Kaya, T., & Yiğit, S. (2023). Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves. Sakarya University Journal of Science, 27(1), 22-38. https://doi.org/10.16984/saufenbilder.1132730
AMA Kaya N, Kaya T, Yiğit S. Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves. SAUJS. February 2023;27(1):22-38. doi:10.16984/saufenbilder.1132730
Chicago Kaya, Nergis, Tayfun Kaya, and Soner Yiğit. “Evaluation of the Effects of Some Raphanus Sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves”. Sakarya University Journal of Science 27, no. 1 (February 2023): 22-38. https://doi.org/10.16984/saufenbilder.1132730.
EndNote Kaya N, Kaya T, Yiğit S (February 1, 2023) Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves. Sakarya University Journal of Science 27 1 22–38.
IEEE N. Kaya, T. Kaya, and S. Yiğit, “Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves”, SAUJS, vol. 27, no. 1, pp. 22–38, 2023, doi: 10.16984/saufenbilder.1132730.
ISNAD Kaya, Nergis et al. “Evaluation of the Effects of Some Raphanus Sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves”. Sakarya University Journal of Science 27/1 (February 2023), 22-38. https://doi.org/10.16984/saufenbilder.1132730.
JAMA Kaya N, Kaya T, Yiğit S. Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves. SAUJS. 2023;27:22–38.
MLA Kaya, Nergis et al. “Evaluation of the Effects of Some Raphanus Sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves”. Sakarya University Journal of Science, vol. 27, no. 1, 2023, pp. 22-38, doi:10.16984/saufenbilder.1132730.
Vancouver Kaya N, Kaya T, Yiğit S. Evaluation of the Effects of Some Raphanus sativus Tuber Extracts on Certain Antioxidant Enzyme Activity and Lipid Peroxidation Level Against Gray Mold (Botrytis Cinerea) in Vicia Faba Leaves. SAUJS. 2023;27(1):22-38.