A Brain-Computer Interface (BCI) is a communication system that decodes and transfers information directly from the brain to external devices. The electroencephalogram (EEG) technique is used to measure the electrical signals corresponding to commands occurring in the brain to control functions. The signals used for control applications in BCI are called Motor Imagery (MI) EEG signals. EEG signals are noisy, so it is important to use the right methods to recognize patterns correctly. This study examined the performances of different classification schemes to train networks using Ensemble Subspace Discriminant classifier. Also, the most efficient feature space was found using Neighborhood Component Analysis. The maximum average accuracy in classifying MI signals corresponding to right-direction and left-direction was 80.4% with a subject-specific classification scheme and 250 features.
Primary Language | English |
---|---|
Subjects | Artificial Intelligence, Software Testing, Verification and Validation, Software Engineering (Other) |
Journal Section | Research Articles |
Authors |
|
Supporting Institution | Selçuk Üniversitesi Öğretim Görevlisi Yetiştirme Programı Koordinatörlüğü |
Project Number | 2017-ÖYP-045 |
Publication Date | April 30, 2023 |
Submission Date | October 17, 2022 |
Acceptance Date | January 10, 2023 |
Published in Issue | Year 2023 Volume: 27 Issue: 2 |
Bibtex | @research article { saufenbilder1190493, journal = {Sakarya University Journal of Science}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2023}, volume = {27}, number = {2}, pages = {259 - 270}, doi = {10.16984/saufenbilder.1190493}, title = {Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes}, key = {cite}, author = {Kaya, Esra and Sarıtas, Ismail} } |
APA | Kaya, E. & Sarıtas, I. (2023). Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes . Sakarya University Journal of Science , 27 (2) , 259-270 . DOI: 10.16984/saufenbilder.1190493 |
MLA | Kaya, E. , Sarıtas, I. "Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes" . Sakarya University Journal of Science 27 (2023 ): 259-270 <https://dergipark.org.tr/en/pub/saufenbilder/issue/76551/1190493> |
Chicago | Kaya, E. , Sarıtas, I. "Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes". Sakarya University Journal of Science 27 (2023 ): 259-270 |
RIS | TY - JOUR T1 - Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes AU - EsraKaya, IsmailSarıtas Y1 - 2023 PY - 2023 N1 - doi: 10.16984/saufenbilder.1190493 DO - 10.16984/saufenbilder.1190493 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 259 EP - 270 VL - 27 IS - 2 SN - -2147-835X M3 - doi: 10.16984/saufenbilder.1190493 UR - https://doi.org/10.16984/saufenbilder.1190493 Y2 - 2023 ER - |
EndNote | %0 Sakarya University Journal of Science Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes %A Esra Kaya , Ismail Sarıtas %T Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes %D 2023 %J Sakarya University Journal of Science %P -2147-835X %V 27 %N 2 %R doi: 10.16984/saufenbilder.1190493 %U 10.16984/saufenbilder.1190493 |
ISNAD | Kaya, Esra , Sarıtas, Ismail . "Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes". Sakarya University Journal of Science 27 / 2 (April 2023): 259-270 . https://doi.org/10.16984/saufenbilder.1190493 |
AMA | Kaya E. , Sarıtas I. Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes. SAUJS. 2023; 27(2): 259-270. |
Vancouver | Kaya E. , Sarıtas I. Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes. Sakarya University Journal of Science. 2023; 27(2): 259-270. |
IEEE | E. Kaya and I. Sarıtas , "Feature Analysis for Motor Imagery EEG Signals with Different Classification Schemes", Sakarya University Journal of Science, vol. 27, no. 2, pp. 259-270, Apr. 2023, doi:10.16984/saufenbilder.1190493 |
Sakarya University Journal of Science (SAUJS)