Research Article
PDF EndNote BibTex RIS Cite

Enhanced Tunicate Swarm Algorithm for Big Data Optimization

Year 2023, Volume: 27 Issue: 2, 313 - 334, 30.04.2023
https://doi.org/10.16984/saufenbilder.1195700

Abstract

Today, with the increasing use of technology tools in daily life, big data has gained even more importance. In recent years, many methods have been used to interpret big data. One of them is metaheuristic algorithms. Meta-heuristic methods, which have been used by very few researchers yet, have become increasingly common. In this study, Tunicate Swarm Algorithm (TSA), which has been newly developed in recent years, was chosen to solve big data optimization problems. The Enhanced TSA (ETSA) was obtained by first developing the swarm action of the TSA. In order to show the achievements of TSA and ETSA, various classical benchmark functions were determined from the literature. The success of ETSA has been proven on these benchmark functions. Then, the successes of TSA and ETSA are shown in detail on big datasets containing six different EEG signal data, with five different population sizes (10, 20, 30, 50, 100) and three different stopping criteria (300, 500, 1000). The results were compared with the Jaya, SOA, and SMA algorithms selected from the literature, and the success of ETSA was determined. The results show that ETSA has sufficient success in solving big data optimization problems and continuous optimization problems.

References

  • [1] S. Aslan, D. Karaboga, “A genetic Artificial Bee Colony algorithm for signal reconstruction based big data optimization,” Applied Soft Computing, vol. 88, pp. 106053, 2020.
  • [2] V. N. Gudivada, R. Baeza-Yates, V. V. Raghavan, “Big data: Promises and problems,” Computer, vol. 48, no. 3, pp. 20–23, 2015.
  • [3] C. W. Tsai, C. -F. Lai, H. -C. Chao, A. V. Vasilakos, “Big data analytics: a survey,” Journal Big Data, vol. 2, no. 1, pp. 21, 2015.
  • [4] M. Hilbert, “Big data for development: A review of promises and challenges,” Development Policy Review, vol. 34, no. 1, pp. 135–174, 2016.
  • [5] S. K. Goh, K. C. Tan, A. Al-Mamun, H.A. Abbass, “Evolutionary big optimization (BigOpt) of signals,” In: 2015 IEEE congress on evolutionary computation (CEC), IEEE, 2015, pp. 3332–3339.
  • [6] Y. Zhang, J. Liu, M. Zhou, Z. Jiang, “A multi-objective memetic algorithm based on decomposition for big optimization problems,” Memetic Computing, vol. 8, no. 1, pp. 45–61, 2016.
  • [7] S. Elsayed, R. Sarker, “An adaptive configuration of differential evolution algorithms for big data,” in: IEEE Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 695–702.
  • [8] M. A. El Majdouli, I. Rbouh, S. Bougrine, B. El Benani, A. A. El Imrani, “Fireworks algorithm framework for Big Data optimization,” Memetic Computing, vol. 8, no. 4, pp. 333–347, 2016.
  • [9] Z. Cao, L. Wang, X. Hei, Q. Jiang, X. Lu, X. Wang, “A phase based optimization algorithm for big optimization problems,” in: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 5209–5214.
  • [10] S. Kaur, L. K. Awasthi, A.L. Sangal, G. Dhiman, “Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization,” Engineering Applications of Artificial Intelligence, vol. 90, pp. 103541, 2020.
  • [11] R. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” International Journal of Industrial Engineering Computations, vol. 7, no. 1, pp. 19-34, 2016.
  • [12] H. Givi, M. Hubalovska, "Skill optimization algorithm: a new human-based metaheuristic technique,” Computers Materials & Continua, vol. 74, no.1, pp. 179–202, 2023.
  • [13] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, “Slime mould algorithm: A new method for stochastic optimization,” Future Generation Computer Systems, vol. 111, pp. 300–323, 2020.
  • [14] S. K. Goh, H.A. Abbass, K. C. Tan, A. Al Mamun, “Artifact removal from EEG using a multi-objective independent component analysis model,” In: International conference on neural information processing, Springer, 2014, pp. 570–577.
  • [15] H. A. Abbass, “Calibrating independent component analysis with Laplacian reference for real-time EEG artifact removal,” In: International conference on neural information processing, Springer, 2014, pp. 68–75.

Year 2023, Volume: 27 Issue: 2, 313 - 334, 30.04.2023
https://doi.org/10.16984/saufenbilder.1195700

Abstract

References

  • [1] S. Aslan, D. Karaboga, “A genetic Artificial Bee Colony algorithm for signal reconstruction based big data optimization,” Applied Soft Computing, vol. 88, pp. 106053, 2020.
  • [2] V. N. Gudivada, R. Baeza-Yates, V. V. Raghavan, “Big data: Promises and problems,” Computer, vol. 48, no. 3, pp. 20–23, 2015.
  • [3] C. W. Tsai, C. -F. Lai, H. -C. Chao, A. V. Vasilakos, “Big data analytics: a survey,” Journal Big Data, vol. 2, no. 1, pp. 21, 2015.
  • [4] M. Hilbert, “Big data for development: A review of promises and challenges,” Development Policy Review, vol. 34, no. 1, pp. 135–174, 2016.
  • [5] S. K. Goh, K. C. Tan, A. Al-Mamun, H.A. Abbass, “Evolutionary big optimization (BigOpt) of signals,” In: 2015 IEEE congress on evolutionary computation (CEC), IEEE, 2015, pp. 3332–3339.
  • [6] Y. Zhang, J. Liu, M. Zhou, Z. Jiang, “A multi-objective memetic algorithm based on decomposition for big optimization problems,” Memetic Computing, vol. 8, no. 1, pp. 45–61, 2016.
  • [7] S. Elsayed, R. Sarker, “An adaptive configuration of differential evolution algorithms for big data,” in: IEEE Congress on Evolutionary Computation (CEC), IEEE, 2015, pp. 695–702.
  • [8] M. A. El Majdouli, I. Rbouh, S. Bougrine, B. El Benani, A. A. El Imrani, “Fireworks algorithm framework for Big Data optimization,” Memetic Computing, vol. 8, no. 4, pp. 333–347, 2016.
  • [9] Z. Cao, L. Wang, X. Hei, Q. Jiang, X. Lu, X. Wang, “A phase based optimization algorithm for big optimization problems,” in: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2016, pp. 5209–5214.
  • [10] S. Kaur, L. K. Awasthi, A.L. Sangal, G. Dhiman, “Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization,” Engineering Applications of Artificial Intelligence, vol. 90, pp. 103541, 2020.
  • [11] R. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” International Journal of Industrial Engineering Computations, vol. 7, no. 1, pp. 19-34, 2016.
  • [12] H. Givi, M. Hubalovska, "Skill optimization algorithm: a new human-based metaheuristic technique,” Computers Materials & Continua, vol. 74, no.1, pp. 179–202, 2023.
  • [13] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, “Slime mould algorithm: A new method for stochastic optimization,” Future Generation Computer Systems, vol. 111, pp. 300–323, 2020.
  • [14] S. K. Goh, H.A. Abbass, K. C. Tan, A. Al Mamun, “Artifact removal from EEG using a multi-objective independent component analysis model,” In: International conference on neural information processing, Springer, 2014, pp. 570–577.
  • [15] H. A. Abbass, “Calibrating independent component analysis with Laplacian reference for real-time EEG artifact removal,” In: International conference on neural information processing, Springer, 2014, pp. 68–75.

Details

Primary Language English
Subjects Software Engineering
Journal Section Research Articles
Authors

Emine BAŞ
KONYA TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ
0000-0003-4322-6010
Türkiye

Publication Date April 30, 2023
Submission Date October 27, 2022
Acceptance Date January 19, 2023
Published in Issue Year 2023 Volume: 27 Issue: 2

Cite

Bibtex @research article { saufenbilder1195700, journal = {Sakarya University Journal of Science}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2023}, volume = {27}, number = {2}, pages = {313 - 334}, doi = {10.16984/saufenbilder.1195700}, title = {Enhanced Tunicate Swarm Algorithm for Big Data Optimization}, key = {cite}, author = {Baş, Emine} }
APA Baş, E. (2023). Enhanced Tunicate Swarm Algorithm for Big Data Optimization . Sakarya University Journal of Science , 27 (2) , 313-334 . DOI: 10.16984/saufenbilder.1195700
MLA Baş, E. "Enhanced Tunicate Swarm Algorithm for Big Data Optimization" . Sakarya University Journal of Science 27 (2023 ): 313-334 <https://dergipark.org.tr/en/pub/saufenbilder/issue/76551/1195700>
Chicago Baş, E. "Enhanced Tunicate Swarm Algorithm for Big Data Optimization". Sakarya University Journal of Science 27 (2023 ): 313-334
RIS TY - JOUR T1 - Enhanced Tunicate Swarm Algorithm for Big Data Optimization AU - EmineBaş Y1 - 2023 PY - 2023 N1 - doi: 10.16984/saufenbilder.1195700 DO - 10.16984/saufenbilder.1195700 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 313 EP - 334 VL - 27 IS - 2 SN - -2147-835X M3 - doi: 10.16984/saufenbilder.1195700 UR - https://doi.org/10.16984/saufenbilder.1195700 Y2 - 2023 ER -
EndNote %0 Sakarya University Journal of Science Enhanced Tunicate Swarm Algorithm for Big Data Optimization %A Emine Baş %T Enhanced Tunicate Swarm Algorithm for Big Data Optimization %D 2023 %J Sakarya University Journal of Science %P -2147-835X %V 27 %N 2 %R doi: 10.16984/saufenbilder.1195700 %U 10.16984/saufenbilder.1195700
ISNAD Baş, Emine . "Enhanced Tunicate Swarm Algorithm for Big Data Optimization". Sakarya University Journal of Science 27 / 2 (April 2023): 313-334 . https://doi.org/10.16984/saufenbilder.1195700
AMA Baş E. Enhanced Tunicate Swarm Algorithm for Big Data Optimization. SAUJS. 2023; 27(2): 313-334.
Vancouver Baş E. Enhanced Tunicate Swarm Algorithm for Big Data Optimization. Sakarya University Journal of Science. 2023; 27(2): 313-334.
IEEE E. Baş , "Enhanced Tunicate Swarm Algorithm for Big Data Optimization", Sakarya University Journal of Science, vol. 27, no. 2, pp. 313-334, Apr. 2023, doi:10.16984/saufenbilder.1195700

Sakarya University Journal of Science (SAUJS)