Research Article
PDF BibTex RIS Cite

Year 2023, Volume: 27 Issue: 4, 858 - 864, 25.08.2023
https://doi.org/10.16984/saufenbilder.1266590

Abstract

References

  • M. Y. Shoeib, K. M. “Thabayneh, assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials,” Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, pp. 174-181, 2014.
  • S. U. Duran, B. Küçükömeroğlu, “Karadeniz teknik üniversitesi kanuni kampüsü’nde bazı ofislerde radon gazı ölçümü ve çevrelerindeki topraklarda radyonüklid seviyeleri,” BE Fen Bilimleri Dergisi, vol. 9, no.1, pp. 68-77, 2020.
  • NNDC [Online]. Available: https://www.nndc.bnl.gov/nudat2/
  • M. E. Kürkçüoğlu, G. Bayraktar, “Süleyman demirel üniversitesi’nde bina içi radon konsantrasyonlarinin nükleer iz dedektörleri kullanilarak belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 16, no. 2, pp. 167-183, 2012.
  • S. Y. Baş, S. A. Selçuk, “Binalarda radon gazi etkisinin azaltilmasina yönelik alinabilecek önlemler üzerine bir değerlendirme,” 3rd International Symposium on Innovative Approaches in Scientific Studies, Ankara, Turkey, 2019, pp. 207-212.
  • H. Zeeb, F. Shannoun, WHO handbook on indoor radon: a public health perspective. France: World Health Organization, 2009.
  • Y. Örgün, N. Çelebi, “Radyasyon, radon ve toplum sağliği,” TMMOB Jeoloji Mühendisleri Odası, vol. 2016/1, 2016.
  • United States Environmental Protection Agency. (2016). A citizen’s guide to radon [Online]. Available: https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
  • N. Celebi, B. Ataksor, H. Taskın, N. A. Bingoldag, “Indoor radon measurements in Turkey dwellings,” Radiation Protection Dosimetry, vol. 167, no. 4, pp. 1-7, 2014.
  • O. Günay, S. Aközcan, F. Kulalı, “Bina içi radon konsantrasyonlarının belirlenmesi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 13, pp. 91-97, 2018.
  • F. Kulalı, O. Günay, S. Aközcan, “Determination of indoor radon levels at campuses of Üsküdar and Okan universities,” International Journal of Environmental Science and Technology, vol. 16, no. 9, pp. 5281-5284, 2019.
  • O. Günay, S. Aközcan, F. Kulalı, “Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul,” Arabian Journal of Geosciences, vol. 12, no. 5, pp. 171, 2019.
  • N. Sharmar, H. S. Virk, “Exhalation rate study of radon/thoron in some building materials,” Radiation Measurements, vol. 34, no. 1-6, pp. 467-469, 2001.
  • S. S. Ozan, C. E. Ekinci, “Yapılarda radon fenomeni ve radon-sağlık ilişkisi,” e-Journal of New World Sciences Academy Engineering Sciences, vol. 6, no. 4, pp. 1590-1602, 2011.
  • F. Tufaner, “Doğal radon emisyonunun insan sağliğina etkileri ve alınması gereken tedbirler,” Graduation Project, Dept. Environ. Eng., Yıldız Teknik Univ., İstanbul, 2015.
  • E. Dursun, “Rize ilinde akciğer kanserli bireylerin evlerinde radon gazı ölçümleri ve akciğer kanseri radon gazi ilişkisi,” Master, Dept. Phys., Recep Tayyip Erdoğan Univ., Rize, 2016.
  • C. E. Andersen, Radon-222 exhalation from Danish building materials: H + H Industri A/S results. Roskilde, Denmark: Risø National Laboratory, 1999.
  • B. K. Sahoo, B. K. Sapra, J. J. Gaware, S. D. Kanse, Y. S. Mayya, “A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples,” Science of the Total Environment, vol. 409, no.13, pp. 2635-2641, 2011.
  • M. İçhedef, “Controlled laboratory experiments on radon diffusion coefficient,” Sakarya University Journal of Science, vol. 23, no. 3, pp. 308-312, 2019.
  • B. Ruvira, B. García-Fayos, B. Juste, J. M. Arnal, G. Verdú, “Experimental estimation of the diffusion coefficient in radon barrier materials based on ISO/TS 11665-13:2017,” Radiation Physics and Chemistry, vol. 193, pp. 109993, 2022
  • N. Chauhan, R. P. Chauhan, M. Joshi, T. K. Agarwal, P. Aggarwal, B. K. Sahoo, “Study of indoor radon distribution using measurements and CFD modelling,” Journal of Environmental Radioactivity, vol. 136, pp. 105-111, 2014.

Radon Gas Estimation from Building Materials

Year 2023, Volume: 27 Issue: 4, 858 - 864, 25.08.2023
https://doi.org/10.16984/saufenbilder.1266590

Abstract

Radon gas originating from building materials is generally thought to cause low concentration. Investigation and estimation of radon levels originating from building materials are important in terms of public health due to the use of dense concrete in tunnel form type houses, which is a building type widely used in Turkey, even though a significant part of Turkey is an earthquake zone. In this article, the effects of different parameters such as 238U concentration in building materials, diffusion constant of building elements, emanation rate, and ventilation rate on radon gas concentration are investigated. As a result, it is concluded that in some cases (such as high diffusion coefficient and insufficient ventilation rate) in houses built with tunnel form concrete structures, the radon level arising from building materials can reach a level that cannot be neglected.

References

  • M. Y. Shoeib, K. M. “Thabayneh, assessment of natural radiation exposure and radon exhalation rate in various samples of Egyptian building materials,” Journal of Radiation Research and Applied Sciences, vol. 7, no. 2, pp. 174-181, 2014.
  • S. U. Duran, B. Küçükömeroğlu, “Karadeniz teknik üniversitesi kanuni kampüsü’nde bazı ofislerde radon gazı ölçümü ve çevrelerindeki topraklarda radyonüklid seviyeleri,” BE Fen Bilimleri Dergisi, vol. 9, no.1, pp. 68-77, 2020.
  • NNDC [Online]. Available: https://www.nndc.bnl.gov/nudat2/
  • M. E. Kürkçüoğlu, G. Bayraktar, “Süleyman demirel üniversitesi’nde bina içi radon konsantrasyonlarinin nükleer iz dedektörleri kullanilarak belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 16, no. 2, pp. 167-183, 2012.
  • S. Y. Baş, S. A. Selçuk, “Binalarda radon gazi etkisinin azaltilmasina yönelik alinabilecek önlemler üzerine bir değerlendirme,” 3rd International Symposium on Innovative Approaches in Scientific Studies, Ankara, Turkey, 2019, pp. 207-212.
  • H. Zeeb, F. Shannoun, WHO handbook on indoor radon: a public health perspective. France: World Health Organization, 2009.
  • Y. Örgün, N. Çelebi, “Radyasyon, radon ve toplum sağliği,” TMMOB Jeoloji Mühendisleri Odası, vol. 2016/1, 2016.
  • United States Environmental Protection Agency. (2016). A citizen’s guide to radon [Online]. Available: https://www.epa.gov/sites/default/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf
  • N. Celebi, B. Ataksor, H. Taskın, N. A. Bingoldag, “Indoor radon measurements in Turkey dwellings,” Radiation Protection Dosimetry, vol. 167, no. 4, pp. 1-7, 2014.
  • O. Günay, S. Aközcan, F. Kulalı, “Bina içi radon konsantrasyonlarının belirlenmesi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 13, pp. 91-97, 2018.
  • F. Kulalı, O. Günay, S. Aközcan, “Determination of indoor radon levels at campuses of Üsküdar and Okan universities,” International Journal of Environmental Science and Technology, vol. 16, no. 9, pp. 5281-5284, 2019.
  • O. Günay, S. Aközcan, F. Kulalı, “Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul,” Arabian Journal of Geosciences, vol. 12, no. 5, pp. 171, 2019.
  • N. Sharmar, H. S. Virk, “Exhalation rate study of radon/thoron in some building materials,” Radiation Measurements, vol. 34, no. 1-6, pp. 467-469, 2001.
  • S. S. Ozan, C. E. Ekinci, “Yapılarda radon fenomeni ve radon-sağlık ilişkisi,” e-Journal of New World Sciences Academy Engineering Sciences, vol. 6, no. 4, pp. 1590-1602, 2011.
  • F. Tufaner, “Doğal radon emisyonunun insan sağliğina etkileri ve alınması gereken tedbirler,” Graduation Project, Dept. Environ. Eng., Yıldız Teknik Univ., İstanbul, 2015.
  • E. Dursun, “Rize ilinde akciğer kanserli bireylerin evlerinde radon gazı ölçümleri ve akciğer kanseri radon gazi ilişkisi,” Master, Dept. Phys., Recep Tayyip Erdoğan Univ., Rize, 2016.
  • C. E. Andersen, Radon-222 exhalation from Danish building materials: H + H Industri A/S results. Roskilde, Denmark: Risø National Laboratory, 1999.
  • B. K. Sahoo, B. K. Sapra, J. J. Gaware, S. D. Kanse, Y. S. Mayya, “A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples,” Science of the Total Environment, vol. 409, no.13, pp. 2635-2641, 2011.
  • M. İçhedef, “Controlled laboratory experiments on radon diffusion coefficient,” Sakarya University Journal of Science, vol. 23, no. 3, pp. 308-312, 2019.
  • B. Ruvira, B. García-Fayos, B. Juste, J. M. Arnal, G. Verdú, “Experimental estimation of the diffusion coefficient in radon barrier materials based on ISO/TS 11665-13:2017,” Radiation Physics and Chemistry, vol. 193, pp. 109993, 2022
  • N. Chauhan, R. P. Chauhan, M. Joshi, T. K. Agarwal, P. Aggarwal, B. K. Sahoo, “Study of indoor radon distribution using measurements and CFD modelling,” Journal of Environmental Radioactivity, vol. 136, pp. 105-111, 2014.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Safa BAŞDEMİR This is me
KOCAELİ ÜNİVERSİTESİ
0009-0009-3599-5785
Türkiye


Caner YALÇIN
KOCAELİ ÜNİVERSİTESİ
0000-0002-3105-7267
Türkiye

Early Pub Date August 19, 2023
Publication Date August 25, 2023
Submission Date March 16, 2023
Acceptance Date May 12, 2023
Published in Issue Year 2023 Volume: 27 Issue: 4

Cite

Bibtex @research article { saufenbilder1266590, journal = {Sakarya University Journal of Science}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2023}, volume = {27}, number = {4}, pages = {858 - 864}, doi = {10.16984/saufenbilder.1266590}, title = {Radon Gas Estimation from Building Materials}, key = {cite}, author = {Başdemir, Safa and Yalçın, Caner} }
APA Başdemir, S. & Yalçın, C. (2023). Radon Gas Estimation from Building Materials . Sakarya University Journal of Science , 27 (4) , 858-864 . DOI: 10.16984/saufenbilder.1266590
MLA Başdemir, S. , Yalçın, C. "Radon Gas Estimation from Building Materials" . Sakarya University Journal of Science 27 (2023 ): 858-864 <https://dergipark.org.tr/en/pub/saufenbilder/issue/79486/1266590>
Chicago Başdemir, S. , Yalçın, C. "Radon Gas Estimation from Building Materials". Sakarya University Journal of Science 27 (2023 ): 858-864
RIS TY - JOUR T1 - Radon Gas Estimation from Building Materials AU - SafaBaşdemir, CanerYalçın Y1 - 2023 PY - 2023 N1 - doi: 10.16984/saufenbilder.1266590 DO - 10.16984/saufenbilder.1266590 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 858 EP - 864 VL - 27 IS - 4 SN - -2147-835X M3 - doi: 10.16984/saufenbilder.1266590 UR - https://doi.org/10.16984/saufenbilder.1266590 Y2 - 2023 ER -
EndNote %0 Sakarya University Journal of Science Radon Gas Estimation from Building Materials %A Safa Başdemir , Caner Yalçın %T Radon Gas Estimation from Building Materials %D 2023 %J Sakarya University Journal of Science %P -2147-835X %V 27 %N 4 %R doi: 10.16984/saufenbilder.1266590 %U 10.16984/saufenbilder.1266590
ISNAD Başdemir, Safa , Yalçın, Caner . "Radon Gas Estimation from Building Materials". Sakarya University Journal of Science 27 / 4 (August 2023): 858-864 . https://doi.org/10.16984/saufenbilder.1266590
AMA Başdemir S. , Yalçın C. Radon Gas Estimation from Building Materials. SAUJS. 2023; 27(4): 858-864.
Vancouver Başdemir S. , Yalçın C. Radon Gas Estimation from Building Materials. Sakarya University Journal of Science. 2023; 27(4): 858-864.
IEEE S. Başdemir and C. Yalçın , "Radon Gas Estimation from Building Materials", Sakarya University Journal of Science, vol. 27, no. 4, pp. 858-864, Aug. 2023, doi:10.16984/saufenbilder.1266590

Sakarya University Journal of Science (SAUJS)