Biyomedikal Uygulamalar için CVD/CVI Yöntemiyle 3D-Öncüller Kullanılarak Üretilen C/C Kompozitlerin Karakterizasyonu
Year 2025,
Volume: 29 Issue: 1, 39 - 49, 28.02.2025
Cemalettin Çamyurdu
,
Şahin Ateş
,
Kerim Emre Öksüz
,
Ayşe Şükran Demirkıran
Abstract
Bu çalışmada, karbon/karbon (C/C) kompozit yapılar, Kimyasal Buhar Sızdırma (CVI) yöntemi kullanılarak üç boyutlu (3D) bir preformda bulunan karbon fiberlerin etrafına pirolitik bir karbon matrisin biriktirilmesiyle üretilmiştir. Başlangıç malzemesi olarak kullanılan preformlar ortogonal fiber geometrisinde ve 3D karbon fiber örgü yapısındaydı. CVD (Kimyasal Buhar Biriktirme) cihazında gerçekleştirilen CVI işlemi 1250 °C'de, 2 mbar basınç altında, 2,0 lt/dk metan gazı akış hızıyla, argon ve azot gazlarından oluşan inert atmosferde kademeli olarak toplam 312 saat süreyle uygulandı. Üretilen blok parça, küçük test numuneleri elde etmek için işlendi; parçalara çekme ve üç nokta eğme testleri uygulandı ve yoğunlukları ölçüldü. Örnekler, ağırlıkça %0,9 izotonik sodyum klorür çözeltisi içinde 37 °C'de toplam 21 gün boyunca in-vitro biyolojik bozunma testlerine tabi tutulmuştur. Üretilen numunelerin yoğunluğu ve görünür gözenekliliği sırasıyla 1.395 g/cm³ ve %13.424 olarak ölçülmüştür. Üretilen C/C kompozitlerin çekme mukavemeti ve eğilme mukavemeti sırasıyla 252,5±6,20 MPa ve 236,6±25,7 MPa olarak belirlenmiştir. 21 günün sonunda C/C kompozitlerin biyolojik bozunma oranı %0,0095 olarak hesaplanmıştır.
References
-
S. Chand, “Review carbon fibers for composites,” Journal of Materials Science, vol. 35, pp. 1303-1313, 2000.
-
P. Wambua, R. Anandjiwala, “A review of preforms for the composites industry,” Journal of Industrial Textiles, vol. 40(4), pp. 310-333, 2011.
-
G. Rohini Devi, K. Rama Rao, “Carbon-carbon composites,” Defence Science Journal, vol. 43(4), pp. 369-383, 1993.
-
R. Mishra, V. Baheti, B.K. Behera, J. Militký, “Novelties of 3-D woven composites and nanocomposites,” The Journal of The Textile Institute, vol. 105(1), pp. 84-92, 2014.
-
H. J. Yang, D. Kim, K. M. Kang, W. R. Yu., “Manufacturing seamless three-dimensional woven preforms withcomplex shapes based on a new weaving technology,” Heliyon, Cellpress, vol. 10, 2024.
-
Z. Tan, X. Zhang, J. Ruan, “Synthesis, structure and properties of carbon/carbon composites artificial rib for chest wall reconstruction,” Scientific Reports, vol. 11(1), 11285, 2021.
-
C. Y. X. Chua, H. C. Liu, A. Susnjar, J. Rudy, G. Scorrano, M. Frerrari, J. Ho, R. Cicalo, A. Grattoni, N. Hernandez, “Carbon fiber reinforced polymers for implantable medical devices,” Biomaterials, vol. 271, 120719, 2021.
-
W. Krenkel, Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications, Germany, 2008.
-
J. C. Bokros, Chemistry and Physics of Carbon, vol. 5, Dekker, New York, 1969.
-
R. B. More, A. D. Haubold, J. C. Bokros, Biomaterials Science, 3rd. Edition, Elsevier, Book, USA, 2013.
-
S. L. Salkeld, L. P. Patron, J. C. Lien, “Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: Assessment in a canine model,” Journal of Orthopaedic Surgery and Research, vol. 11(155), pp. 1-12, 2016.
-
J. C. Bokros, “Carbon Biomedical Devices,” Carbon, vol. 15(6), pp. 353-371 1977.
-
W. Ze, T. Wen-sheng, Ye-Xia, “Preparation of anticoagulant PyC biomaterials with super-hydrophobic surface,” Journal of Applied Biomaterials & Functional Materials, vol. 16(1S), pp. 125-131, 2018.
-
R. Naslain, F. Langlais, G. Vignoles, R. Pailler, ‘’The CVI-process: State of the art and perspective. In: Mechanical Properties and Performance of Engineering Ceramics II’’ Ceramic Engineering and Science Proceedings, Wiley, pp. 373–386, 2008.
-
M. Wang, L. Guo, H. Sun, ‘’Manufacture of Biomaterials”, Encyclopedia of Biomedical Engineering, Elsevier, Book, 2019.
-
M. Ross, C. James, J. Klawitter, “Pyrocarbon small joint arthroplasty of the extremities”, Joint Replacement Technology, 2nd Edition, Elsevier, Book, 2014.
-
N. Agarwal, A. Rangamani, K. Bhavsar, S. S. Virnodkar, A. A. Fernandes, U. Chadha, D. Srivastava, A. E. Patterson, V. Rajasekharan, “An overview of carbon-carbon composite materials and their applications,” Frontiers in Materials, vol. 11:1374034, 2024.
-
C. H. Kim, S. Y. Lee, K. Y. Rhee, S. J Park, “Carbon-based composites in biomedical applications: A comprehensive review of properties, applications, and future directions,” Advanced Composites and Hybrid Materials, vol. 7:55, 2024.
-
W. Murphy, J. Black, G. Hastings, Handbook of Biomaterial Properties, 2nd Edition, Springer, Book, 2016.
-
F. Li, Y. Ma, W. Xu, W. Zhu, G. Wang, Y. Xu, H. Guo, Y. Li, “Study on the mechanical and tribological properties of C/C composites by CVI and PIP,” Emerging Materials Research, vol. 11(4), pp. 438-446, 2022.
-
L. Zhang, H. Li, S. Zhang, J. Lu, Y. Zhang, X. Zhao, C. Gu, X. Zeng, “Characterization of wear particles from biomedical carbon/carbon composites with different preforms in hip joint simulator”. Transactions of Nonferrous Metals Society of China, vol. 22(10), pp. 2562-2568, 2012.
-
P. Christel, A. D. Meunier, S. Leclercq, P. Bouquet, B. Buttazzoni, “Development of a carbon-carbon hip prosthesis,” Journal of Biomedical Materials Research, vol. 21(A2 Suppl), pp. 191-218, 1987.
-
V. S. S. H. Vardhan, A. Sharma, S. Tiruveedhula, R. S. Buradagunta, “Comparative study on the biodegradation behavior of pure Mg in NaCl solution and simulated body fluids”, Advances in Science and Technology, vol. 120, pp. 69-73, 2022.
-
H. Wang, Z. Shi, “In vitro Biodegradation Behavior of Magnesium and Magnesium Alloy”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 98(2), pp. 203–209, 2011.
-
X. Liu, H. Yang, P. Xiong, W. Li, Huang, H. H. Y. Zheng, “Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions,” Corrosion Science, vol. 157, pp. 205–219, 2019.
-
C. D. Bohorquez-Moreno, K. E. Öksüz, E. Dinçer, “Porous polymer scaffolds derived from bioresources for biomedical applications,” Cellulose Chemistry and Technology, vol. 57(1-2), pp. 107-116, 2023.
-
N. P. Bansal, J. Lamon, Ceramic matrix composites: Materials, Modeling and Technology, Wiley, The American Ceramic Society, Book, 2014.
-
H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes- Processing, Properties and Applications, 1st edition, Elsevier, eBook, 1994.
-
E. Fitzer, L. M. Manocha, ‘’Carbon Reinforcements and Carbon/Carbon Composites”, Springer, Book, Germany, 1998.
-
S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick, S. C. Tan, J. Chen, “Carbon nanotube reinforced strong carbon matrix composites,” ACS Nano, vol. 14(8), pp. 9282-9319, 2020.
-
A. B. Perumal, R. B. Nambiar, P. S. Sellamuthu, E. R. Sadiku, “Carbon Fiber Composites’’, In Springer eBooks, pp. 85–115, 2021.
-
A. Ateş, B. Aydemir, K. E. Öksüz, “Investigation of physicochemical and biological properties of boron-doped biochar,” Biomass Conversion and Biorefinery, vol. 14(20), pp. 26355-26369, 2023.
-
Y. Z. Wan, Y.L. Wang, X. H. Xu, Q. Y. Li, “In vitro degradation behavior of carbon fiber‐reinforced PLA composites and influence of interfacial adhesion strength,” Journal of Applied Polymer Science, vol. 82(1), pp. 150–158, 2001.
-
E. Díaz, I. Sandonis, M. B. Valle, “In Vitro degradation of Poly(caprolactone)/nHA composites,” Journal of Nanomaterials, vol. 2014(1), 802435, 2014.
-
S. Krishnakumar, S. Thiyagarajan, “In vitro degradation analysis and mechanical characterization of PLA-CF composites prepared by fused filament fabrication technique for bio-medical applications,” Journal of Thermoplastic Composite Materials, vol. 37(8), pp. 2702-2722, 2023.
Characterization of C/C Composites Produced Using 3D-preforms by CVD/CVI Method for Biomedical Applications
Year 2025,
Volume: 29 Issue: 1, 39 - 49, 28.02.2025
Cemalettin Çamyurdu
,
Şahin Ateş
,
Kerim Emre Öksüz
,
Ayşe Şükran Demirkıran
Abstract
In this study, carbon/carbon (C/C) composite structures were produced by depositing a pyrolytic carbon matrix around carbon fibers found in a three-dimensional (3D) preform using the Chemical Vapor Infiltration (CVI) method. The preforms used as starting materials were in orthogonal fiber geometry and 3D carbon fiber knitting structure. The CVI process performed in the CVD (Chemical Vapor Deposition) device was carried out at 1250 ℃, under 2 mbar pressure, with a methane gas flow rate of 2.0 lt/min, for a total period of 312 hours gradually applied in an inert atmosphere consisting of argon and nitrogen gases. The produced block piece was processed to obtain small test samples; tensile and three-point bending tests were applied to the pieces, and their densities were measured. Samples were subjected to in-vitro biodegradation tests in 0.9 % isotonic sodium chloride solution by weight at 37 °C for a total of 21 days. The density and apparent porosity of the produced samples were measured to be 1.395 g/cm³ and 13.424%, respectively. The tensile strength and bending strength of the produced C/C composites were determined to be 252.5±6.20 MPa and 236.6±25.7 MPa, respectively. At the end of 21 days, the biodegradation ratio of C/C composites was calculated as 0.0095%.
References
-
S. Chand, “Review carbon fibers for composites,” Journal of Materials Science, vol. 35, pp. 1303-1313, 2000.
-
P. Wambua, R. Anandjiwala, “A review of preforms for the composites industry,” Journal of Industrial Textiles, vol. 40(4), pp. 310-333, 2011.
-
G. Rohini Devi, K. Rama Rao, “Carbon-carbon composites,” Defence Science Journal, vol. 43(4), pp. 369-383, 1993.
-
R. Mishra, V. Baheti, B.K. Behera, J. Militký, “Novelties of 3-D woven composites and nanocomposites,” The Journal of The Textile Institute, vol. 105(1), pp. 84-92, 2014.
-
H. J. Yang, D. Kim, K. M. Kang, W. R. Yu., “Manufacturing seamless three-dimensional woven preforms withcomplex shapes based on a new weaving technology,” Heliyon, Cellpress, vol. 10, 2024.
-
Z. Tan, X. Zhang, J. Ruan, “Synthesis, structure and properties of carbon/carbon composites artificial rib for chest wall reconstruction,” Scientific Reports, vol. 11(1), 11285, 2021.
-
C. Y. X. Chua, H. C. Liu, A. Susnjar, J. Rudy, G. Scorrano, M. Frerrari, J. Ho, R. Cicalo, A. Grattoni, N. Hernandez, “Carbon fiber reinforced polymers for implantable medical devices,” Biomaterials, vol. 271, 120719, 2021.
-
W. Krenkel, Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications, Germany, 2008.
-
J. C. Bokros, Chemistry and Physics of Carbon, vol. 5, Dekker, New York, 1969.
-
R. B. More, A. D. Haubold, J. C. Bokros, Biomaterials Science, 3rd. Edition, Elsevier, Book, USA, 2013.
-
S. L. Salkeld, L. P. Patron, J. C. Lien, “Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: Assessment in a canine model,” Journal of Orthopaedic Surgery and Research, vol. 11(155), pp. 1-12, 2016.
-
J. C. Bokros, “Carbon Biomedical Devices,” Carbon, vol. 15(6), pp. 353-371 1977.
-
W. Ze, T. Wen-sheng, Ye-Xia, “Preparation of anticoagulant PyC biomaterials with super-hydrophobic surface,” Journal of Applied Biomaterials & Functional Materials, vol. 16(1S), pp. 125-131, 2018.
-
R. Naslain, F. Langlais, G. Vignoles, R. Pailler, ‘’The CVI-process: State of the art and perspective. In: Mechanical Properties and Performance of Engineering Ceramics II’’ Ceramic Engineering and Science Proceedings, Wiley, pp. 373–386, 2008.
-
M. Wang, L. Guo, H. Sun, ‘’Manufacture of Biomaterials”, Encyclopedia of Biomedical Engineering, Elsevier, Book, 2019.
-
M. Ross, C. James, J. Klawitter, “Pyrocarbon small joint arthroplasty of the extremities”, Joint Replacement Technology, 2nd Edition, Elsevier, Book, 2014.
-
N. Agarwal, A. Rangamani, K. Bhavsar, S. S. Virnodkar, A. A. Fernandes, U. Chadha, D. Srivastava, A. E. Patterson, V. Rajasekharan, “An overview of carbon-carbon composite materials and their applications,” Frontiers in Materials, vol. 11:1374034, 2024.
-
C. H. Kim, S. Y. Lee, K. Y. Rhee, S. J Park, “Carbon-based composites in biomedical applications: A comprehensive review of properties, applications, and future directions,” Advanced Composites and Hybrid Materials, vol. 7:55, 2024.
-
W. Murphy, J. Black, G. Hastings, Handbook of Biomaterial Properties, 2nd Edition, Springer, Book, 2016.
-
F. Li, Y. Ma, W. Xu, W. Zhu, G. Wang, Y. Xu, H. Guo, Y. Li, “Study on the mechanical and tribological properties of C/C composites by CVI and PIP,” Emerging Materials Research, vol. 11(4), pp. 438-446, 2022.
-
L. Zhang, H. Li, S. Zhang, J. Lu, Y. Zhang, X. Zhao, C. Gu, X. Zeng, “Characterization of wear particles from biomedical carbon/carbon composites with different preforms in hip joint simulator”. Transactions of Nonferrous Metals Society of China, vol. 22(10), pp. 2562-2568, 2012.
-
P. Christel, A. D. Meunier, S. Leclercq, P. Bouquet, B. Buttazzoni, “Development of a carbon-carbon hip prosthesis,” Journal of Biomedical Materials Research, vol. 21(A2 Suppl), pp. 191-218, 1987.
-
V. S. S. H. Vardhan, A. Sharma, S. Tiruveedhula, R. S. Buradagunta, “Comparative study on the biodegradation behavior of pure Mg in NaCl solution and simulated body fluids”, Advances in Science and Technology, vol. 120, pp. 69-73, 2022.
-
H. Wang, Z. Shi, “In vitro Biodegradation Behavior of Magnesium and Magnesium Alloy”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 98(2), pp. 203–209, 2011.
-
X. Liu, H. Yang, P. Xiong, W. Li, Huang, H. H. Y. Zheng, “Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions,” Corrosion Science, vol. 157, pp. 205–219, 2019.
-
C. D. Bohorquez-Moreno, K. E. Öksüz, E. Dinçer, “Porous polymer scaffolds derived from bioresources for biomedical applications,” Cellulose Chemistry and Technology, vol. 57(1-2), pp. 107-116, 2023.
-
N. P. Bansal, J. Lamon, Ceramic matrix composites: Materials, Modeling and Technology, Wiley, The American Ceramic Society, Book, 2014.
-
H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes- Processing, Properties and Applications, 1st edition, Elsevier, eBook, 1994.
-
E. Fitzer, L. M. Manocha, ‘’Carbon Reinforcements and Carbon/Carbon Composites”, Springer, Book, Germany, 1998.
-
S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick, S. C. Tan, J. Chen, “Carbon nanotube reinforced strong carbon matrix composites,” ACS Nano, vol. 14(8), pp. 9282-9319, 2020.
-
A. B. Perumal, R. B. Nambiar, P. S. Sellamuthu, E. R. Sadiku, “Carbon Fiber Composites’’, In Springer eBooks, pp. 85–115, 2021.
-
A. Ateş, B. Aydemir, K. E. Öksüz, “Investigation of physicochemical and biological properties of boron-doped biochar,” Biomass Conversion and Biorefinery, vol. 14(20), pp. 26355-26369, 2023.
-
Y. Z. Wan, Y.L. Wang, X. H. Xu, Q. Y. Li, “In vitro degradation behavior of carbon fiber‐reinforced PLA composites and influence of interfacial adhesion strength,” Journal of Applied Polymer Science, vol. 82(1), pp. 150–158, 2001.
-
E. Díaz, I. Sandonis, M. B. Valle, “In Vitro degradation of Poly(caprolactone)/nHA composites,” Journal of Nanomaterials, vol. 2014(1), 802435, 2014.
-
S. Krishnakumar, S. Thiyagarajan, “In vitro degradation analysis and mechanical characterization of PLA-CF composites prepared by fused filament fabrication technique for bio-medical applications,” Journal of Thermoplastic Composite Materials, vol. 37(8), pp. 2702-2722, 2023.