Research Article
BibTex RIS Cite

Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors

Year 2025, Volume: 29 Issue: 1, 27 - 38
https://doi.org/10.16984/saufenbilder.1577506

Abstract

This study presents the development of duplex NiP/NiMo-(h)BN co-electrodeposit applied to steel substrates using a reverse pulsed current (PC) deposition technique. The (h)BN was synthesized in a two-dimensional nanosheet structure via metallothermic reduction in molten salt. Duplex electrodeposition provide improved physical and mechanical characteristics over single-layer plating, making them suitable for applications requiring enhanced wear and adhesion properties. Here, NiP was selected as the inner layer due to its strong adhesion to steel, while NiMo-(h)BN served as the outer layer to maximize wear resistance. Both NiP and NiP/NiMo-(h)BN electrodeposits were deposited using a reverse pulsed current approach to enhance high temperature wear resistance of the steel substrate. Incorporating (h)BN nanosheets into the NiMo matrix significantly improved the deposit's nano-hardness, raising it from 4.26 GPa to 5.23 GPa with the addition of 10 g/L (h)BN. Additionally, the solid lubrication properties of (h)BN reduced the friction coefficient of the duplex electrodeposit from 0.7 to 0.4 µ. At 400 °C, the wear rate of the duplex NiP/NiMo-(h)BN co-electrodeposit was measured at 1.77 x 10⁻⁵ mm³/Nm, demonstrating nearly twice the wear resistance compared to the duplex NiP/NiMo alloy deposit.

Supporting Institution

Sakarya University Science Research Projects Coordinators

Project Number

SAU BAP 2020-7-24-86

Thanks

We would like to thank Etimaden A.Ş. for providing us with the sodium tetraborate used in this study.

References

  • M. S. Chandrasekar, M. Pushpavanam, “Pulse and pulse reverse plating-Conceptual, advantages and applications,” Electrochimica Acta, vol. 53, pp. 3313–3322, 2008.
  • S. Tan, H. Algül, E. Kiliçaslan, A. Alp, H. Akbulut, M. Uysal, “The effect of ultrasonic power on high temperature wear and corrosion resistance for Ni based alloy composite coatings,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 656, pp.130345, 2023.
  • B. Pan, Y. Yao, L. Peng, Q. Zhang, Y. Yang, “Ultrasound-assisted pulse electrodeposition of cobalt films,” Materials Chemistry and Physics, vol. 241, pp. 122395, 2020.
  • S. I. Ghazanlou, S. Ahmadiyeh, R. Yavari, “Investigation of pulse electrodeposited Ni–Co/SiO2 nanocomposite plating” Surface Engineering, vol. 33, pp. 337-347, 2017.
  • Y. Wang, L. Guan, Z. He, S. Zhang, H. Singh, M.D. Hayat, C. Yao, “Influence of pretreatments on physicochemical properties of Ni-P coatings electrodeposited on aluminum alloy,” Materials and Design, vol. 197, pp. 109233, 2021.
  • A. A. Wronkowska, A. Wronkowski, “Optical properties of polycrystalline and amorphous Nil-xPx layers by ellipsometry,” Journal of Materials Science vol. 27, pp. 1842-1848, 1992.
  • F. E. T. Heakal, M. A. Shoeib, M. A. Maanoum, “Optimizing parameters affecting electroless Ni-P coatings on AZ91D magnesium alloy as corrosion protection barriers,” Protection of Metals and Physical Chemistry of Surfaces, vol. 53, pp. 177-187, 2017.
  • E. W. Brooman, “Corrosion behavior of environmentally acceptable alternatives to cadmium and chromium coatings: Cadmium. Part I,” Metal Finishing, vol. 98, pp.42-50, 2000.
  • V. Torabinejad, M. Aliofkhazraei, A.S. Rouhaghdam, M. H. Allahyarzadeh, “Electrodeposition of Ni–Fe–Mn/Al2O3 functionally graded nanocomposite coatings,” Surface Engineering, vol. 33, pp.122-130,2017.
  • P. Kedzierzawski, D. Oleszak, M. Janik-Czachor, “Hydrogen evolution on hot and cold consolidated Ni-Mo alloys produced by mechanical alloying,” Materials Science and Engineering: A, vol. 300, pp. 105-112, 2001.
  • E. Ünal, H. Karahan, “Production and characterization of electrodeposited Ni-B/hBN composite coatings”, Surface and Coatings Technology, vol. 333, pp.125-137, 2018.
  • A. Laszczyńska, J. Winiarski, B. Szczygieł, I. Szczygieł, “Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings,” Applied Surface Science., vol. 369, pp. 224-231,2016.
  • Y. Xu, B. Liang, Y. Gao, J. Zou, R. Hua, Y. Z. Sun, Y. Chen, Q. Zhao, “Pulse electrodeposition of a duplex-layer structured composite nickel-based coating with improved corrosion and abrasion resistance,” Ceramic International, vol. 50, pp. 10515-10524, 2024.
  • B. Li, W. Zhang, D. Li, Y. Huan, J. Dong, “Microstructural, surface and electrochemical properties of a novel Ni–B/Ni–W–BN duplex composite coating by co-electrodeposition,” Applied Surface Science, vol. 458, pp. 305-318, 2018.
  • M. S. Safavi, A. Rasooli, F. A. Sorkhabi, “Electrodeposition of Ni-P/Ni-Co-Al2O3 duplex nanocomposite coatings: towards improved mechanical and corrosion properties,” Transactions of the Institute of Metal Finishing, vol. 98, pp. 320-327, 2020.
  • H. Algul, M. Uysal, A. Alp, “A comparative study on morphological, mechanical and tribological properties of electroless NiP, NiB and NiBP coatings,” Applied Surface Science Advances, vol. 4, pp. 100089, 2021.
  • K. Bao, F. Yu, L. Shi, S. Liu, X. Hu, J. Cao, Y. Qian, “Synthesis of highly crystalline rhombohedral BN triangular nanoplates via a convenient solid state reaction,” Journal of Solid State Chemistry, vol. 182, pp.925-931, 2009.
  • L. Ye, L. Zhao, F. Liang, X. He, W. Fang, H. Chen, S. Zhang, S. An, “Facile synthesis of hexagonal boron nitride nanoplates via molten-salt-mediated magnesiothermic reduction,” Ceramic International, vol. 41, pp. 14941–14948, 2015.
  • Q. Li, C. Lee, R. W. Carpick, J. Hone, “Substrate effect on thickness-dependent friction on graphene,” Physica Status Solidi (B) – Basic Solid State Physics, vol. 247, pp. 2909-2914, 2010.
  • M. Örnek, K. Wang, S. Xiang, C. Hwang, K. Y. Xie, R. A. Haber, “Molten salt synthesis of highly ordered and nanostructured hexagonal boron nitride,” Diamond and Related Materials, vol. 93, pp. 179–186 ,2019.
  • Y. Haseko, N. K. Shrestha, S. Teruyama, T. Saji, “Reversal pulsing electrodeposition of Ni/polypyrrole composite film,” Electrochimica Acta, vol. 51, pp. 3652–3657, 2006.
  • C. Guo, Y. Zuo, X. Zhao, J. Zhao, J. Xiong, “The effects of pulse-reverse parameters on the properties of Ni-carbon nanotubes composite coatings,” Surface and Coating Technology, vol. 201, pp. 9491-9496, 2007.
  • J. H. Liu, J. X. Yan, Z. L. Pei, J. Gong, C. Sun, “Effects of Mo content on the grain size, hardness and anti–wear performance of electrodeposited nanocrystalline and amorphous Ni–Mo alloys,” Surface and Coating Technology, vol. 404, pp. 126476, 2020.
  • S. Dilek, H. Algül, A. Akyol, A. Alp, H. Akbulut, M. Uysal, “Pulse electro co-deposition of submicron-sized TiC reinforced Ni–W coatings: tribological and corrosion properties,” Journal of Asian Ceramic Societies, vol. 9, pp. 673–685, 2021.
  • C. Baldwin, T. E. Such, “The Plating Rates and Physical Properties of Electroless Nickel/Phosphorus Alloy Deposits,” Transactions of the IMF, vol. 46, pp. 73-80, 1968.
  • O. A. León, M. H. Staia, H. E. Hintermann, “Wear mechanism of Ni-P-BN(h) composite autocatalytic coatings,” Surface and Coating Technology, vol. 200, pp. 1825-1829, 2005.
  • M. H. Staia, H. E. Hintermann, O. A. Leon, “Influence of the heat treatment on the tribological behavior of a Ni – P – BN ( h ) autocatalytic composite plating” Surface and Coating Technology, vol. 121, pp. 641-645, 1999.
  • F. Kiliç, H. Gül, S. Aslan, A. Alp, H. Akbulut, “Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 419, pp. 53-60, 2013.
  • H. Algul, H. Gul, M. Uysal, A. Alp, H. Akbulut, “Tribological Properties of TiO2 Reinforced Nickel Based MMCs Produced by Pulse Electrodeposition Technique,” Transactions of the Indian Institute of Metals, vol. 68, pp.79-87, 2014.
  • H. Akbulut, G. Hatipoglu, H. Algul, M. Tokur, M. Kartal, M. Uysal, T. Cetinkaya, “Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition,” Surface and Coating Technology, vol. 284, pp. 344-352, 2015.
  • O. A. León, M. H. Staia, H. E. Hintermann, “High temperature wear of an electroless Ni-P-BN (h) composite plating” Surface and Coating Technology, vol. 163–164, pp. 578-584, 2003.

Dubleks NiP/NiMo-(h)BN Birlikte Elektrokaplama: Nanohardness, Oda ve Yüksek Sıcaklık Aşınma Davranışlarının Değerlendirilmesi

Year 2025, Volume: 29 Issue: 1, 27 - 38
https://doi.org/10.16984/saufenbilder.1577506

Abstract

This study explores the fabrication of duplex NiP/NiMo-(h)BN co-electrodeposits on steel substrates utilizing the reverse pulsed current (RPC) deposition method. Duplex electrodeposition offers superior physical and mechanical properties compared to single-layer plating, rendering it highly suitable for applications demanding enhanced wear resistance and adhesion. Here, NiP was selected as the inner layer due to its strong adhesion to steel, while NiMo-(h)BN served as the outer layer to maximize wear resistance. Both NiP and NiP/NiMo-(h)BN electrodeposits were deposited using a reverse pulsed current approach to enhance high temperature wear resistance of the steel substrate. The incorporation of (h)BN nanosheets into the NiMo matrix markedly enhanced the nano-hardness of the deposit, increasing it from 4.26 GPa to 5.23 GPa with the incorporation of 10 g/L (h)BN. Additionally, the solid lubrication properties of (h)BN reduced the friction coefficient of the duplex electrodeposit from 0.7 to 0.4 µ. At 400 °C, the duplex NiP/NiMo-(h)BN co-electrodeposit exhibited a wear rate of 1.77 × 10⁵ mm³/Nm, nearly doubling the wear resistance of the duplex NiP/NiMo alloy deposit.

Project Number

SAU BAP 2020-7-24-86

References

  • M. S. Chandrasekar, M. Pushpavanam, “Pulse and pulse reverse plating-Conceptual, advantages and applications,” Electrochimica Acta, vol. 53, pp. 3313–3322, 2008.
  • S. Tan, H. Algül, E. Kiliçaslan, A. Alp, H. Akbulut, M. Uysal, “The effect of ultrasonic power on high temperature wear and corrosion resistance for Ni based alloy composite coatings,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 656, pp.130345, 2023.
  • B. Pan, Y. Yao, L. Peng, Q. Zhang, Y. Yang, “Ultrasound-assisted pulse electrodeposition of cobalt films,” Materials Chemistry and Physics, vol. 241, pp. 122395, 2020.
  • S. I. Ghazanlou, S. Ahmadiyeh, R. Yavari, “Investigation of pulse electrodeposited Ni–Co/SiO2 nanocomposite plating” Surface Engineering, vol. 33, pp. 337-347, 2017.
  • Y. Wang, L. Guan, Z. He, S. Zhang, H. Singh, M.D. Hayat, C. Yao, “Influence of pretreatments on physicochemical properties of Ni-P coatings electrodeposited on aluminum alloy,” Materials and Design, vol. 197, pp. 109233, 2021.
  • A. A. Wronkowska, A. Wronkowski, “Optical properties of polycrystalline and amorphous Nil-xPx layers by ellipsometry,” Journal of Materials Science vol. 27, pp. 1842-1848, 1992.
  • F. E. T. Heakal, M. A. Shoeib, M. A. Maanoum, “Optimizing parameters affecting electroless Ni-P coatings on AZ91D magnesium alloy as corrosion protection barriers,” Protection of Metals and Physical Chemistry of Surfaces, vol. 53, pp. 177-187, 2017.
  • E. W. Brooman, “Corrosion behavior of environmentally acceptable alternatives to cadmium and chromium coatings: Cadmium. Part I,” Metal Finishing, vol. 98, pp.42-50, 2000.
  • V. Torabinejad, M. Aliofkhazraei, A.S. Rouhaghdam, M. H. Allahyarzadeh, “Electrodeposition of Ni–Fe–Mn/Al2O3 functionally graded nanocomposite coatings,” Surface Engineering, vol. 33, pp.122-130,2017.
  • P. Kedzierzawski, D. Oleszak, M. Janik-Czachor, “Hydrogen evolution on hot and cold consolidated Ni-Mo alloys produced by mechanical alloying,” Materials Science and Engineering: A, vol. 300, pp. 105-112, 2001.
  • E. Ünal, H. Karahan, “Production and characterization of electrodeposited Ni-B/hBN composite coatings”, Surface and Coatings Technology, vol. 333, pp.125-137, 2018.
  • A. Laszczyńska, J. Winiarski, B. Szczygieł, I. Szczygieł, “Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings,” Applied Surface Science., vol. 369, pp. 224-231,2016.
  • Y. Xu, B. Liang, Y. Gao, J. Zou, R. Hua, Y. Z. Sun, Y. Chen, Q. Zhao, “Pulse electrodeposition of a duplex-layer structured composite nickel-based coating with improved corrosion and abrasion resistance,” Ceramic International, vol. 50, pp. 10515-10524, 2024.
  • B. Li, W. Zhang, D. Li, Y. Huan, J. Dong, “Microstructural, surface and electrochemical properties of a novel Ni–B/Ni–W–BN duplex composite coating by co-electrodeposition,” Applied Surface Science, vol. 458, pp. 305-318, 2018.
  • M. S. Safavi, A. Rasooli, F. A. Sorkhabi, “Electrodeposition of Ni-P/Ni-Co-Al2O3 duplex nanocomposite coatings: towards improved mechanical and corrosion properties,” Transactions of the Institute of Metal Finishing, vol. 98, pp. 320-327, 2020.
  • H. Algul, M. Uysal, A. Alp, “A comparative study on morphological, mechanical and tribological properties of electroless NiP, NiB and NiBP coatings,” Applied Surface Science Advances, vol. 4, pp. 100089, 2021.
  • K. Bao, F. Yu, L. Shi, S. Liu, X. Hu, J. Cao, Y. Qian, “Synthesis of highly crystalline rhombohedral BN triangular nanoplates via a convenient solid state reaction,” Journal of Solid State Chemistry, vol. 182, pp.925-931, 2009.
  • L. Ye, L. Zhao, F. Liang, X. He, W. Fang, H. Chen, S. Zhang, S. An, “Facile synthesis of hexagonal boron nitride nanoplates via molten-salt-mediated magnesiothermic reduction,” Ceramic International, vol. 41, pp. 14941–14948, 2015.
  • Q. Li, C. Lee, R. W. Carpick, J. Hone, “Substrate effect on thickness-dependent friction on graphene,” Physica Status Solidi (B) – Basic Solid State Physics, vol. 247, pp. 2909-2914, 2010.
  • M. Örnek, K. Wang, S. Xiang, C. Hwang, K. Y. Xie, R. A. Haber, “Molten salt synthesis of highly ordered and nanostructured hexagonal boron nitride,” Diamond and Related Materials, vol. 93, pp. 179–186 ,2019.
  • Y. Haseko, N. K. Shrestha, S. Teruyama, T. Saji, “Reversal pulsing electrodeposition of Ni/polypyrrole composite film,” Electrochimica Acta, vol. 51, pp. 3652–3657, 2006.
  • C. Guo, Y. Zuo, X. Zhao, J. Zhao, J. Xiong, “The effects of pulse-reverse parameters on the properties of Ni-carbon nanotubes composite coatings,” Surface and Coating Technology, vol. 201, pp. 9491-9496, 2007.
  • J. H. Liu, J. X. Yan, Z. L. Pei, J. Gong, C. Sun, “Effects of Mo content on the grain size, hardness and anti–wear performance of electrodeposited nanocrystalline and amorphous Ni–Mo alloys,” Surface and Coating Technology, vol. 404, pp. 126476, 2020.
  • S. Dilek, H. Algül, A. Akyol, A. Alp, H. Akbulut, M. Uysal, “Pulse electro co-deposition of submicron-sized TiC reinforced Ni–W coatings: tribological and corrosion properties,” Journal of Asian Ceramic Societies, vol. 9, pp. 673–685, 2021.
  • C. Baldwin, T. E. Such, “The Plating Rates and Physical Properties of Electroless Nickel/Phosphorus Alloy Deposits,” Transactions of the IMF, vol. 46, pp. 73-80, 1968.
  • O. A. León, M. H. Staia, H. E. Hintermann, “Wear mechanism of Ni-P-BN(h) composite autocatalytic coatings,” Surface and Coating Technology, vol. 200, pp. 1825-1829, 2005.
  • M. H. Staia, H. E. Hintermann, O. A. Leon, “Influence of the heat treatment on the tribological behavior of a Ni – P – BN ( h ) autocatalytic composite plating” Surface and Coating Technology, vol. 121, pp. 641-645, 1999.
  • F. Kiliç, H. Gül, S. Aslan, A. Alp, H. Akbulut, “Effect of CTAB concentration in the electrolyte on the tribological properties of nanoparticle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 419, pp. 53-60, 2013.
  • H. Algul, H. Gul, M. Uysal, A. Alp, H. Akbulut, “Tribological Properties of TiO2 Reinforced Nickel Based MMCs Produced by Pulse Electrodeposition Technique,” Transactions of the Indian Institute of Metals, vol. 68, pp.79-87, 2014.
  • H. Akbulut, G. Hatipoglu, H. Algul, M. Tokur, M. Kartal, M. Uysal, T. Cetinkaya, “Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition,” Surface and Coating Technology, vol. 284, pp. 344-352, 2015.
  • O. A. León, M. H. Staia, H. E. Hintermann, “High temperature wear of an electroless Ni-P-BN (h) composite plating” Surface and Coating Technology, vol. 163–164, pp. 578-584, 2003.
There are 31 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Mert Aydın 0009-0004-6256-6322

Hasan Algül 0000-0002-4348-8865

Figen Algül 0000-0002-0314-1613

Sezer Tan 0000-0002-1265-6897

Ahmet Alp 0000-0002-6164-4729

Project Number SAU BAP 2020-7-24-86
Early Pub Date February 13, 2025
Publication Date
Submission Date November 1, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Aydın, M., Algül, H., Algül, F., Tan, S., et al. (2025). Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors. Sakarya University Journal of Science, 29(1), 27-38. https://doi.org/10.16984/saufenbilder.1577506
AMA Aydın M, Algül H, Algül F, Tan S, Alp A. Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors. SAUJS. February 2025;29(1):27-38. doi:10.16984/saufenbilder.1577506
Chicago Aydın, Mert, Hasan Algül, Figen Algül, Sezer Tan, and Ahmet Alp. “Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors”. Sakarya University Journal of Science 29, no. 1 (February 2025): 27-38. https://doi.org/10.16984/saufenbilder.1577506.
EndNote Aydın M, Algül H, Algül F, Tan S, Alp A (February 1, 2025) Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors. Sakarya University Journal of Science 29 1 27–38.
IEEE M. Aydın, H. Algül, F. Algül, S. Tan, and A. Alp, “Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors”, SAUJS, vol. 29, no. 1, pp. 27–38, 2025, doi: 10.16984/saufenbilder.1577506.
ISNAD Aydın, Mert et al. “Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors”. Sakarya University Journal of Science 29/1 (February 2025), 27-38. https://doi.org/10.16984/saufenbilder.1577506.
JAMA Aydın M, Algül H, Algül F, Tan S, Alp A. Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors. SAUJS. 2025;29:27–38.
MLA Aydın, Mert et al. “Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors”. Sakarya University Journal of Science, vol. 29, no. 1, 2025, pp. 27-38, doi:10.16984/saufenbilder.1577506.
Vancouver Aydın M, Algül H, Algül F, Tan S, Alp A. Duplex NiP/NiMo-(h)BN Co-Electroplating: Evaluation of Nanohardness, Room and High Temperature Wear Behaviors. SAUJS. 2025;29(1):27-38.

33418 30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946


30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .