Research Article
BibTex RIS Cite

Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites

Year 2025, Volume: 29 Issue: 1, 71 - 82

Abstract

Global warming, increasing production and consumption rates, environmental concerns have revealed the need for some innovative material studies, and studies on the use of polymeric composites prepared with natural based fillers have become widespread in order to increase environmental awareness and ensure sustainable production. Composite materials prepared by using easily accessible, affordable, lightweight, high-strength plant based fillers can be used in many areas. In this study, composites of low density polyethylene (LDPE), which is one of the most widely used thermoplastics, were prepared by injection moulding process using the waste seeds of olives (OS), which have an important place in Turkey's agriculture and economy, and the density, hardness (Shore D), spectroscopic (Fourier transform infrared (FTIR) spectroscopy), morphological (Scanning electron microscopy (SEM)), mechanical, thermal (Differential Scanning Calorimetry (DSC), Heat Deflection Temperature (HDT) and Vicat softening temperature) analyses of OS filled LDPE composites were performed. As a result of the study, an increase in hardness and elastic modulus values of OS filled LDPE composites was observed, while no noticeable decrease in thermal properties was seen.

References

  • T. Väisänen, O. Das, L. Tomppo, “A review on new bio-based constituents for natural fiber-polymer composites.,” Journal of Cleaner Production, vol. 149, pp. 582–596, 2017.
  • I. I. Qamhia, S. S. Shams, R. F. El-Hajjar, “Quasi-isotropic triaxially braided cellulose-reinforced composites.,” Mechanics of Advanced Materials and Structures, vol. 22, no. 12, pp. 988–995, 2015.
  • V. K. Thakur, M. K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites.,” Carbohydrate polymers, vol. 109, pp. 102–117, 2014.
  • S. Siengchin, “Editorial corner–a personal view Potential use of’green’composites in automotive applications,.” Express Polymer Letters, vol. 11, no. 8, p. 600, 2017.
  • I. K. Neelamana, S. Thomas, J. Parameswaranpillai, “Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites‐macroscale to nanoscale.,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 1239–1246, 2013.
  • B. Karacor, M. Özcanlı, “Characterization of jute/aramid hybrid composite materials with using different resins.,” Sakarya University Journal of Science, vol. 26, no. 5, pp. 915–930, 2022.
  • E. Omrani, P. L. Menezes, P. K. Rohatgi, “State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world.,” Engineering Science and Technology, an International Journal, vol. 19, no. 2, pp. 717–736, 2016.
  • A. K. Rana, A. Mandal, S. Bandyopadhyay, “Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading.,” Composites Science and Technology, vol. 63, no. 6, pp. 801–806, 2003.
  • A. K. Bledzki, J. Gassan, “Composites reinforced with cellulose based fibres.,” Progress in polymer science, vol. 24, no. 2, pp. 221–274, 1999.
  • M. Jawaid, H. P. S. A. Khalil, “Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review.,” Carbohydrate polymers, vol. 86, no. 1, pp. 1–18, 2011.
  • P. L. Menezes, P. K. Rohatgi, M. R. Lovell, “Studies on the tribological behavior of natural fiber reinforced polymer composite.,” Green tribology: Biomimetics, energy conservation and sustainability, pp. 329–345, 2012.
  • D. B. Dittenber, H. V. S. GangaRao, “Critical review of recent publications on use of natural composites in infrastructure.,” Composites Part A: Applied science and manufacturing, vol. 43, no. 8, pp. 1419–1429, 2012.
  • P. Dey, S. Ray, “An overview of the recent trends in manufacturing of green composites–considerations and challenges.,” Materials Today: Proceedings, vol. 5, no. 9, pp. 19783–19789, 2018.
  • E. Zini, M. Scandola, “Green composites: an overview.,” Polymer composites, vol. 32, no. 12, pp. 1905–1915, 2011.
  • R. Potluri, N. C. Krishna, “Potential and applications of green composites in industrial space.,” Materials Today: Proceedings, vol. 22, pp. 2041–2048, 2020.
  • T. dos Santos Pegoretti, F. Mathieux, D. Evrard, D. Brissaud, J. R. de França Arruda, “Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector.,” Resources, conservation and recycling, vol. 84, pp. 1–14, 2014.
  • M. Fan, F. Fu, “Introduction: A perspective–natural fibre composites in construction.,” In: Advanced high strength natural fibre composites in construction. pp. 1–20. Elsevier (2017).
  • R. Potluri, “Natural fiber-based hybrid bio-composites: processing, characterization, and applications.,” In: Green composites: processing, characterisation and applications for textiles. pp. 1–46. Springer (2018).
  • B. Lucintel, “Opportunities in Natural Fiber Composites.,” Texas Lucintel: Dallas, TX, USA, p. 2011.
  • M. J. John, S. Thomas, “Biofibres and biocomposites.,” Carbohydrate polymers, vol. 71, no. 3, pp. 343–364, 2008.
  • P. Madhu, M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, B. Yogesha, “A review on synthesis and characterization of commercially available natural fibers: Part II.,” Journal of Natural Fibers, vol. 16, no. 1, pp. 25–36, 2019.
  • A. Al Rashid, M. Y. Khalid, R. Imran, U. Ali, M. Koc, “Utilization of banana fiber-reinforced hybrid composites in the sports industry.,” Materials, vol. 13, no. 14, p. 3167, 2020.
  • D. G. Devadiga, K. S. Bhat, G. T. Mahesha, “Sugarcane bagasse fiber reinforced composites: Recent advances and applications.,” Cogent Engineering, vol. 7, no. 1, p. 1823159, 2020.
  • S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, “Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications.,” Journal of Industrial Textiles, vol. 49, no. 8, pp. 1036–1060, 2020.
  • E. Roumeli, Z. Terzopoulou, E. Pavlidou, K. Chrissafis, E.Papadopoulou, E. Athanasiadou, K. Triantafyllidis, D. N. Bikiaris, “Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites.,” Journal of Thermal Analysis and Calorimetry, vol. 121, pp. 93–105, 2015.
  • P. Russo, G. Simeoli, D. Acierno, V. Lopresto, “Mechanical properties of virgin and recycled polyolefin‐based composite laminates reinforced with jute fabric.,” Polymer Composites, vol. 36, no. 11, pp. 2022–2029, 2015.
  • E. Saldivar-Guerra, E. Vivaldo-Lima, Handbook of polymer synthesis, characterization, and processing. John Wiley & Sons, 2013.
  • L. A. Utracki, C. A. Wilkie, Polymer blends handbook. Kluwer academic publishers Dordrecht, 2002.
  • H. Yetgin, “Otomotiv sektörü için polimer köpük malzeme üretimi ve karakterizasyonu. Sakarya Üniversitesi.,” Fen Bilimleri Enstitüsü, Metal Eğitimi Bölümü, Yüksek Lisans Tezi, p. 2012.
  • B. Manjula , A. B. Reddy , E.R. Sadiku , V. Sivanjineyulu , G.F. Molelekwa 3, J. Jayaramudu , K. R. Kumar., “Use of polyolefins in hygienic applications.,” In: Polyolefin Fibres. pp. 539–560. Elsevier (2017).
  • S. Lüftl, P. Visakh, “Polyethylene‐based Biocomposites and Bionanocomposites: State‐of‐the‐Art, New Challenges and Opportunities.,” Polyethylene‐Based Biocomposites and Bionanocomposites, pp. 1–41, 2016.
  • N. C. Paxton, M. C. Allenby, P. M. Lewis, M. A. Woodruff, “Biomedical applications of polyethylene.,” European Polymer Journal, vol. 118, pp. 412–428, 2019.
  • Y. Behjat, J. J. Cheng, M. A. Polak, A. Penlidis, “Effect of molecular structure on the short-term and long-term mechanical behavior of high-density polyethylene.,” Journal of materials in civil engineering, vol. 26, no. 5, pp. 795–802, 2014.
  • P. K. Roy, S. Titus, P. Surekha, E. Tulsi, C. Deshmukh, C. Rajagopal, “Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium.,” Polymer degradation and stability, vol. 93, no. 10, pp. 1917–1922, 2008.
  • S. Rodríguez-Fabià, C. Zarna, G. Chinga-Carrasco, “A comparative study of kraft pulp fibres and the corresponding fibrillated materials as reinforcement of LDPE-and HDPE-biocomposites.,” Composites Part A: Applied Science and Manufacturing, vol. 173, p. 107678, 2023.
  • M. Taşdemır, H. Biltekin, G. T. Caneba, “Preparation and characterization of LDPE and PP—wood fiber composites.,” Journal of applied polymer science, vol. 112, no. 5, pp. 3095–3102, 2009.
  • D. A. C. Gomes , E. H. de Novais Miranda, M. C. R. de Araújo Veloso , M. G. da Silva , G. C. Ferreira , L. M. Mendes , J. B. G. Júnio, “Production and characterization of recycled low-density polyethylene/amazon palm fiber composites.,” Industrial Crops and Products, vol. 201, p. 116833, 2023.
  • E. Sakar, H. Ünver, “Türkiye’de zeytin yetiştiriciliğinin durumu ve ülkemizde yapılan bazı seleksiyon ve adaptasyon çalışmaları.,” Harran Tarım ve Gıda Bilimleri Dergisi, vol. 15, no. 2, pp. 19–25, 2011.
  • M. K. Savran, Z. Y. Ü. K. MÜH, “Dünyada ve Türkiye’de Zeytincilik,” (2017).
  • A. Abd Mohammed, A. L. M. E. Depart, “Study the Thermal Properties and Water Absorption of Composite Materials Rrinforced With Data and Olive Seeds.,” Iraqi J. Mech. Mater. Eng, vol. 15, no. 2, pp. 138–152, 2015.
  • M. R. El-Aassar, F. M. Mohamed, I. H. Alsohaimi, R. E. Khalifa, “Fabrication of novel valorized ecofriendly olive seed residue/anthracite/chitosan composite for removal of Cr (VI): kinetics, isotherms and thermodynamics modeling.,” Cellulose, vol. 28, no. 11, pp. 7165–7183, 2021.
  • S. Valvez, A. Maceiras, P. Santos, P. N. B. Reis, “Olive stones as filler for polymer-based composites: a review.,” Materials, vol. 14, no. 4, p. 845, 2021.
  • N. Pardalis, E. Xanthopoulou, A. Zamboulis, D.N. Bikiaris, “Olive stone as a filler for recycled high-density polyethylene: A promising valorization of solid wastes from olive oil industry.,” Sustainable Chemistry for the Environment, vol. 6, p. 100090, 2024.
  • W. Marzouk, F. Bettaieb, R. Khiari, H. Majdoub, “Composite materials based on low-density polyethylene loaded with date pits.,” Journal of Thermoplastic Composite Materials, vol. 30, no. 9, pp. 1200–1216, 2017.
  • K. tak Lau, P. yan Hung, M. H. Zhu, D. Hui, “Properties of natural fibre composites for structural engineering applications.,” Composites Part B: Engineering, vol. 136, no. October 2017, pp. 222–233, 2018.
  • V. K. Balla, K. H. Kate, J. Satyavolu, P. Singh, J. G. D. Tadimeti, “Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects.,” Composites Part B: Engineering, vol. 174, no. May, p. 2019.
  • M. Valente, F. Sarasini, F. Marra, J. Tirillo, G. Pulci, “Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization.,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 6, pp. 649–657, 2011.
  • N. M. Stark, L. M. Matuana, “Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy.,” Polymer degradation and stability, vol. 86, no. 1, pp. 1–9, 2004.
  • S. S. Ndlovu, A. J. Van Reenen, A. S. Luyt, “LDPE–wood composites utilizing degraded LDPE as compatibilizer.,” Composites Part A: Applied Science and Manufacturing, vol. 51, pp. 80–88, 2013.
  • Z. Sydow, K. Bieńczak, “The overview on the use of natural fibers reinforced composites for food packaging.,” Journal of Natural Fibers, p. 2018.
  • C. Swaroop, M. Shukla, “Development of blown polylactic acid-MgO nanocomposite films for food packaging.,” Composites Part A: Applied Science and Manufacturing, vol. 124, p. 105482, 2019.
  • M Atagür, N Kaya, T Uysalman, C Durmuşkahya, M Sarikanat, K Sever, Y Seki., “A detailed characterization of sandalwood-filled high-density polyethylene composites.,” Journal of Thermoplastic Composite Materials, vol. 35, no. 11, pp. 1903–1920, 2022.
  • L Altay, M Atagür, K Sever, Y Sekİ, H Yilmazkarasu, A Oruç, H Toprak, Y Seki, M Sarikanat, E. Bozacı, “The Effect of Wastes of Nettle Fiber on Mechanical and Thermal Properties of Polypropylene Composite.,” Journal of Natural Fibers, vol. 20, no. 1, p. 2172641, 2023.
  • E. Tronc, C. A. Hernández-Escobar, R. Ibarra-Gómez, A. Estrada-Monje, J. Navarrete-Bolaños, E. A. Zaragoza-Contreras, “Blue agave fiber esterification for the reinforcement of thermoplastic composites.,” Carbohydrate Polymers, vol. 67, no. 2, pp. 245–255, 2007.
  • F. Z. Arrakhiz, M. El Achaby, K. Benmoussa, R. Bouhfid, E. M. Essassi, A. Qaiss, “Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene.,” Materials & Design, vol. 40, pp. 528–535, 2012.
  • Ü. Tayfun, Y. Kanbur, “Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites.,” Sakarya University Journal of Science, vol. 22, no. 2, pp. 333–339, 2018.
  • F.Z. Arrakhiz, M. El Achaby , M. Malha , M.O. Bensalah , O. Fassi-Fehri , R. Bouhfid , K. Benmoussa , A. Qaiss, “Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene.,” Materials & Design, vol. 43, pp. 200–205, 2013.
  • A. Faisal, H. Salmah, “Mechanical and thermal properties of compatibilized waste office white paper-filled low-density polyethylene composites.,” Journal of Thermoplastic Composite Materials, vol. 25, no. 2, pp. 193–207, 2012.
  • H. Salmah, A. Faisal, “The effect of waste office white paper content and size on the mechanical and thermal properties of low-density polyethylene (LDPE) composites.,” Polymer-Plastics Technology and Engineering, vol. 49, no. 7, pp. 672–677, 2010.
  • S. Singh, A. K. Mohanty, “Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation.,” Composites Science and Technology, vol. 67, no. 9, pp. 1753–1763, 2007.

Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites

Year 2025, Volume: 29 Issue: 1, 71 - 82

Abstract

Global warming, increasing production and consumption rates, environmental concerns have revealed the need for some innovative material studies, and studies on the use of polymeric composites prepared with natural based fillers have become widespread to increase environmental awareness and ensure sustainable production. Composite materials prepared by using easily accessible, affordable, lightweight, high-strength plant based fillers can be used in many areas. In this study, composites of low density polyethylene (LDPE), which is one of the most widely used thermoplastics, were prepared by injection moulding process using the waste seeds of olives (OS), which have an important place in Turkey's agriculture and economy, and the density, hardness (Shore D), spectroscopic (Fourier transform infrared (FTIR) spectroscopy), morphological (Scanning electron microscopy (SEM)), mechanical, thermal (Differential Scanning Calorimetry (DSC), Heat Deflection Temperature (HDT) and Vicat softening temperature) analyses of OS filled LDPE composites were performed. As a result of the study, an increase in hardness and elastic modulus values of OS filled LDPE composites was observed, while no noticeable decrease in thermal properties was seen.

References

  • T. Väisänen, O. Das, L. Tomppo, “A review on new bio-based constituents for natural fiber-polymer composites.,” Journal of Cleaner Production, vol. 149, pp. 582–596, 2017.
  • I. I. Qamhia, S. S. Shams, R. F. El-Hajjar, “Quasi-isotropic triaxially braided cellulose-reinforced composites.,” Mechanics of Advanced Materials and Structures, vol. 22, no. 12, pp. 988–995, 2015.
  • V. K. Thakur, M. K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites.,” Carbohydrate polymers, vol. 109, pp. 102–117, 2014.
  • S. Siengchin, “Editorial corner–a personal view Potential use of’green’composites in automotive applications,.” Express Polymer Letters, vol. 11, no. 8, p. 600, 2017.
  • I. K. Neelamana, S. Thomas, J. Parameswaranpillai, “Characteristics of banana fibers and banana fiber reinforced phenol formaldehyde composites‐macroscale to nanoscale.,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 1239–1246, 2013.
  • B. Karacor, M. Özcanlı, “Characterization of jute/aramid hybrid composite materials with using different resins.,” Sakarya University Journal of Science, vol. 26, no. 5, pp. 915–930, 2022.
  • E. Omrani, P. L. Menezes, P. K. Rohatgi, “State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world.,” Engineering Science and Technology, an International Journal, vol. 19, no. 2, pp. 717–736, 2016.
  • A. K. Rana, A. Mandal, S. Bandyopadhyay, “Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading.,” Composites Science and Technology, vol. 63, no. 6, pp. 801–806, 2003.
  • A. K. Bledzki, J. Gassan, “Composites reinforced with cellulose based fibres.,” Progress in polymer science, vol. 24, no. 2, pp. 221–274, 1999.
  • M. Jawaid, H. P. S. A. Khalil, “Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review.,” Carbohydrate polymers, vol. 86, no. 1, pp. 1–18, 2011.
  • P. L. Menezes, P. K. Rohatgi, M. R. Lovell, “Studies on the tribological behavior of natural fiber reinforced polymer composite.,” Green tribology: Biomimetics, energy conservation and sustainability, pp. 329–345, 2012.
  • D. B. Dittenber, H. V. S. GangaRao, “Critical review of recent publications on use of natural composites in infrastructure.,” Composites Part A: Applied science and manufacturing, vol. 43, no. 8, pp. 1419–1429, 2012.
  • P. Dey, S. Ray, “An overview of the recent trends in manufacturing of green composites–considerations and challenges.,” Materials Today: Proceedings, vol. 5, no. 9, pp. 19783–19789, 2018.
  • E. Zini, M. Scandola, “Green composites: an overview.,” Polymer composites, vol. 32, no. 12, pp. 1905–1915, 2011.
  • R. Potluri, N. C. Krishna, “Potential and applications of green composites in industrial space.,” Materials Today: Proceedings, vol. 22, pp. 2041–2048, 2020.
  • T. dos Santos Pegoretti, F. Mathieux, D. Evrard, D. Brissaud, J. R. de França Arruda, “Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector.,” Resources, conservation and recycling, vol. 84, pp. 1–14, 2014.
  • M. Fan, F. Fu, “Introduction: A perspective–natural fibre composites in construction.,” In: Advanced high strength natural fibre composites in construction. pp. 1–20. Elsevier (2017).
  • R. Potluri, “Natural fiber-based hybrid bio-composites: processing, characterization, and applications.,” In: Green composites: processing, characterisation and applications for textiles. pp. 1–46. Springer (2018).
  • B. Lucintel, “Opportunities in Natural Fiber Composites.,” Texas Lucintel: Dallas, TX, USA, p. 2011.
  • M. J. John, S. Thomas, “Biofibres and biocomposites.,” Carbohydrate polymers, vol. 71, no. 3, pp. 343–364, 2008.
  • P. Madhu, M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, B. Yogesha, “A review on synthesis and characterization of commercially available natural fibers: Part II.,” Journal of Natural Fibers, vol. 16, no. 1, pp. 25–36, 2019.
  • A. Al Rashid, M. Y. Khalid, R. Imran, U. Ali, M. Koc, “Utilization of banana fiber-reinforced hybrid composites in the sports industry.,” Materials, vol. 13, no. 14, p. 3167, 2020.
  • D. G. Devadiga, K. S. Bhat, G. T. Mahesha, “Sugarcane bagasse fiber reinforced composites: Recent advances and applications.,” Cogent Engineering, vol. 7, no. 1, p. 1823159, 2020.
  • S. Jothibasu, S. Mohanamurugan, R. Vijay, D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, “Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications.,” Journal of Industrial Textiles, vol. 49, no. 8, pp. 1036–1060, 2020.
  • E. Roumeli, Z. Terzopoulou, E. Pavlidou, K. Chrissafis, E.Papadopoulou, E. Athanasiadou, K. Triantafyllidis, D. N. Bikiaris, “Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites.,” Journal of Thermal Analysis and Calorimetry, vol. 121, pp. 93–105, 2015.
  • P. Russo, G. Simeoli, D. Acierno, V. Lopresto, “Mechanical properties of virgin and recycled polyolefin‐based composite laminates reinforced with jute fabric.,” Polymer Composites, vol. 36, no. 11, pp. 2022–2029, 2015.
  • E. Saldivar-Guerra, E. Vivaldo-Lima, Handbook of polymer synthesis, characterization, and processing. John Wiley & Sons, 2013.
  • L. A. Utracki, C. A. Wilkie, Polymer blends handbook. Kluwer academic publishers Dordrecht, 2002.
  • H. Yetgin, “Otomotiv sektörü için polimer köpük malzeme üretimi ve karakterizasyonu. Sakarya Üniversitesi.,” Fen Bilimleri Enstitüsü, Metal Eğitimi Bölümü, Yüksek Lisans Tezi, p. 2012.
  • B. Manjula , A. B. Reddy , E.R. Sadiku , V. Sivanjineyulu , G.F. Molelekwa 3, J. Jayaramudu , K. R. Kumar., “Use of polyolefins in hygienic applications.,” In: Polyolefin Fibres. pp. 539–560. Elsevier (2017).
  • S. Lüftl, P. Visakh, “Polyethylene‐based Biocomposites and Bionanocomposites: State‐of‐the‐Art, New Challenges and Opportunities.,” Polyethylene‐Based Biocomposites and Bionanocomposites, pp. 1–41, 2016.
  • N. C. Paxton, M. C. Allenby, P. M. Lewis, M. A. Woodruff, “Biomedical applications of polyethylene.,” European Polymer Journal, vol. 118, pp. 412–428, 2019.
  • Y. Behjat, J. J. Cheng, M. A. Polak, A. Penlidis, “Effect of molecular structure on the short-term and long-term mechanical behavior of high-density polyethylene.,” Journal of materials in civil engineering, vol. 26, no. 5, pp. 795–802, 2014.
  • P. K. Roy, S. Titus, P. Surekha, E. Tulsi, C. Deshmukh, C. Rajagopal, “Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium.,” Polymer degradation and stability, vol. 93, no. 10, pp. 1917–1922, 2008.
  • S. Rodríguez-Fabià, C. Zarna, G. Chinga-Carrasco, “A comparative study of kraft pulp fibres and the corresponding fibrillated materials as reinforcement of LDPE-and HDPE-biocomposites.,” Composites Part A: Applied Science and Manufacturing, vol. 173, p. 107678, 2023.
  • M. Taşdemır, H. Biltekin, G. T. Caneba, “Preparation and characterization of LDPE and PP—wood fiber composites.,” Journal of applied polymer science, vol. 112, no. 5, pp. 3095–3102, 2009.
  • D. A. C. Gomes , E. H. de Novais Miranda, M. C. R. de Araújo Veloso , M. G. da Silva , G. C. Ferreira , L. M. Mendes , J. B. G. Júnio, “Production and characterization of recycled low-density polyethylene/amazon palm fiber composites.,” Industrial Crops and Products, vol. 201, p. 116833, 2023.
  • E. Sakar, H. Ünver, “Türkiye’de zeytin yetiştiriciliğinin durumu ve ülkemizde yapılan bazı seleksiyon ve adaptasyon çalışmaları.,” Harran Tarım ve Gıda Bilimleri Dergisi, vol. 15, no. 2, pp. 19–25, 2011.
  • M. K. Savran, Z. Y. Ü. K. MÜH, “Dünyada ve Türkiye’de Zeytincilik,” (2017).
  • A. Abd Mohammed, A. L. M. E. Depart, “Study the Thermal Properties and Water Absorption of Composite Materials Rrinforced With Data and Olive Seeds.,” Iraqi J. Mech. Mater. Eng, vol. 15, no. 2, pp. 138–152, 2015.
  • M. R. El-Aassar, F. M. Mohamed, I. H. Alsohaimi, R. E. Khalifa, “Fabrication of novel valorized ecofriendly olive seed residue/anthracite/chitosan composite for removal of Cr (VI): kinetics, isotherms and thermodynamics modeling.,” Cellulose, vol. 28, no. 11, pp. 7165–7183, 2021.
  • S. Valvez, A. Maceiras, P. Santos, P. N. B. Reis, “Olive stones as filler for polymer-based composites: a review.,” Materials, vol. 14, no. 4, p. 845, 2021.
  • N. Pardalis, E. Xanthopoulou, A. Zamboulis, D.N. Bikiaris, “Olive stone as a filler for recycled high-density polyethylene: A promising valorization of solid wastes from olive oil industry.,” Sustainable Chemistry for the Environment, vol. 6, p. 100090, 2024.
  • W. Marzouk, F. Bettaieb, R. Khiari, H. Majdoub, “Composite materials based on low-density polyethylene loaded with date pits.,” Journal of Thermoplastic Composite Materials, vol. 30, no. 9, pp. 1200–1216, 2017.
  • K. tak Lau, P. yan Hung, M. H. Zhu, D. Hui, “Properties of natural fibre composites for structural engineering applications.,” Composites Part B: Engineering, vol. 136, no. October 2017, pp. 222–233, 2018.
  • V. K. Balla, K. H. Kate, J. Satyavolu, P. Singh, J. G. D. Tadimeti, “Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects.,” Composites Part B: Engineering, vol. 174, no. May, p. 2019.
  • M. Valente, F. Sarasini, F. Marra, J. Tirillo, G. Pulci, “Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization.,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 6, pp. 649–657, 2011.
  • N. M. Stark, L. M. Matuana, “Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy.,” Polymer degradation and stability, vol. 86, no. 1, pp. 1–9, 2004.
  • S. S. Ndlovu, A. J. Van Reenen, A. S. Luyt, “LDPE–wood composites utilizing degraded LDPE as compatibilizer.,” Composites Part A: Applied Science and Manufacturing, vol. 51, pp. 80–88, 2013.
  • Z. Sydow, K. Bieńczak, “The overview on the use of natural fibers reinforced composites for food packaging.,” Journal of Natural Fibers, p. 2018.
  • C. Swaroop, M. Shukla, “Development of blown polylactic acid-MgO nanocomposite films for food packaging.,” Composites Part A: Applied Science and Manufacturing, vol. 124, p. 105482, 2019.
  • M Atagür, N Kaya, T Uysalman, C Durmuşkahya, M Sarikanat, K Sever, Y Seki., “A detailed characterization of sandalwood-filled high-density polyethylene composites.,” Journal of Thermoplastic Composite Materials, vol. 35, no. 11, pp. 1903–1920, 2022.
  • L Altay, M Atagür, K Sever, Y Sekİ, H Yilmazkarasu, A Oruç, H Toprak, Y Seki, M Sarikanat, E. Bozacı, “The Effect of Wastes of Nettle Fiber on Mechanical and Thermal Properties of Polypropylene Composite.,” Journal of Natural Fibers, vol. 20, no. 1, p. 2172641, 2023.
  • E. Tronc, C. A. Hernández-Escobar, R. Ibarra-Gómez, A. Estrada-Monje, J. Navarrete-Bolaños, E. A. Zaragoza-Contreras, “Blue agave fiber esterification for the reinforcement of thermoplastic composites.,” Carbohydrate Polymers, vol. 67, no. 2, pp. 245–255, 2007.
  • F. Z. Arrakhiz, M. El Achaby, K. Benmoussa, R. Bouhfid, E. M. Essassi, A. Qaiss, “Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene.,” Materials & Design, vol. 40, pp. 528–535, 2012.
  • Ü. Tayfun, Y. Kanbur, “Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites.,” Sakarya University Journal of Science, vol. 22, no. 2, pp. 333–339, 2018.
  • F.Z. Arrakhiz, M. El Achaby , M. Malha , M.O. Bensalah , O. Fassi-Fehri , R. Bouhfid , K. Benmoussa , A. Qaiss, “Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene.,” Materials & Design, vol. 43, pp. 200–205, 2013.
  • A. Faisal, H. Salmah, “Mechanical and thermal properties of compatibilized waste office white paper-filled low-density polyethylene composites.,” Journal of Thermoplastic Composite Materials, vol. 25, no. 2, pp. 193–207, 2012.
  • H. Salmah, A. Faisal, “The effect of waste office white paper content and size on the mechanical and thermal properties of low-density polyethylene (LDPE) composites.,” Polymer-Plastics Technology and Engineering, vol. 49, no. 7, pp. 672–677, 2010.
  • S. Singh, A. K. Mohanty, “Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation.,” Composites Science and Technology, vol. 67, no. 9, pp. 1753–1763, 2007.
There are 60 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Sibel Tuna 0000-0002-4406-9048

İbrahim Şen 0000-0003-2733-7191

Early Pub Date February 20, 2025
Publication Date
Submission Date November 21, 2024
Acceptance Date February 13, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Tuna, S., & Şen, İ. (2025). Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites. Sakarya University Journal of Science, 29(1), 71-82.
AMA Tuna S, Şen İ. Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites. SAUJS. February 2025;29(1):71-82.
Chicago Tuna, Sibel, and İbrahim Şen. “Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites”. Sakarya University Journal of Science 29, no. 1 (February 2025): 71-82.
EndNote Tuna S, Şen İ (February 1, 2025) Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites. Sakarya University Journal of Science 29 1 71–82.
IEEE S. Tuna and İ. Şen, “Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites”, SAUJS, vol. 29, no. 1, pp. 71–82, 2025.
ISNAD Tuna, Sibel - Şen, İbrahim. “Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites”. Sakarya University Journal of Science 29/1 (February 2025), 71-82.
JAMA Tuna S, Şen İ. Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites. SAUJS. 2025;29:71–82.
MLA Tuna, Sibel and İbrahim Şen. “Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites”. Sakarya University Journal of Science, vol. 29, no. 1, 2025, pp. 71-82.
Vancouver Tuna S, Şen İ. Characterization of Olive Seed Powder Incorporated Low Density Polyethylene Composites. SAUJS. 2025;29(1):71-82.

33418 30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946


30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .