Research Article
BibTex RIS Cite

Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells

Year 2025, Volume: 29 Issue: 3, 285 - 292, 26.06.2025
https://doi.org/10.16984/saufenbilder.1663815

Abstract

Perovskite solar cells have garnered extensive focus in recent years owing to their unique characteristics and promising potential in photovoltaic applications. Hole transport layers (HTL) composed of metals are critical components for achieving stable performance in CH3NH3PbI3 perovskite solar cells. This study demonstrates the effect of metal doping in the CoOx HTL. A systematic investigation of photovoltaic performance was conducted using a fast and practical solution-based approach, incorporating Cu as a dopant. The structural and morphological properties were observed through surface roughness and electrical measurements. The Cu-doped CoOₓ film exhibited improved photovoltaic performance compared to its undoped counterpart, with efficiency reaching 9.02% from 6.17%.

References

  • J. Yan, B. Saunders, “Third-generation solar cells: A review and comparison of polymer: Fullerene, hybrid polymer and perovskite solar cells,” RSC Advances, vol. 4, pp. 43286-43314, 2014.
  • A. Paulke, S. Stranks, J. Kniepert, J. Kurpiers, C. Wolff, N. Schön, H. Snaith, T. Brenner, D. Neher, “Charge carrier recombination dynamics in perovskite and polymer solar cells,” Applied Physics Letters, vol. 108, 113505, 2016.
  • W. Li, Z. Wang, F. Deschler, S. Gao, R. Friend, A. Cheetham, “Chemically diverse and multifunctional hybrid organic-inorganic perovskites,” Nature Reviews Materials, vol. 2, no. 3, pp. 1-18, 2017.
  • NREL Energy, “Best research cell Efficiency Chart,” [Online]. Available: http://www.nrel.gov/pv/cell-efficiency.html
  • M. Green, “Third generation photovoltaics: Solar cells for 2020 and beyond,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 14, pp. 65-70, 2002.
  • J. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, “Promises and challenges of perovskite solar cells,” Science, vol. 358, pp. 739-744, 2017.
  • R. Singh, V. Shuukla, “ITIC-based bulk heterojunction perovskite film boosting the power conversion efficiency and stability of the perovskite solar cell,” Solar Energy, vol. 178, pp. 90-97, 2019.
  • R. Singh, S. Sandhu, J. Lee, “Elucidating the effect of shunt losses on the performance of mesoporous perovskite solar cells,” Solar Energy, vol. 193, pp. 956-961, 2019.
  • S. Mali, C. Hong, “P-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: Synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides,” Nanoscale, vol. 8, no. 20, pp. 10528-10540, 2016.
  • Y. Yu, D. Zhao, C. Grice, W. Meng, C. Wang, W. Liao, A. Cimaroli, H. Zhang, K. Zhu, Y. Yan, “Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication,” RSC Advances, vol. 6, pp. 90248-90254, 2016.
  • Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Duan, H. Wang, Y. Liu, G. Li, Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
  • J. Pan, C. Mu, Q. Li, W. Li, D. Ma, D. Xu, “Room-Temperature, Hydrochloride-Assisted, One-Step Deposition for Highly Efficient and Air-Stable Perovskite Solar Cells,” Advanced Materials, vol. 28, no. 37, pp. 8309-8314, 2016.
  • G. Wang, D. Liu, J. Xiang, D. Zhou, K. Alameh, B. Ding, Q. Song, “Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating,” RSC Advances, vol. 6, pp. 43299-43303, 2016.
  • S. Ulična, B. Dou, D. Kim, K. Zhu, J. Walls, J. Bowers, M. Van Hest, “Scalable deposition of high-efficiency perovskite solar cells by spray-coating,” ACS Applied Energy Materials, vol. 1, no. 5, pp. 1853-1857, 2018.
  • F. Shao, L. Xu, Z. Tian, Y. Xie, Y. Wang, P. Sheng, D. Wang, F. Huang, “A modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells,” RSC Advances, vol. 6, pp. 42377-42381, 2016.
  • J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, W. Lau, “Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell,” ACS Applied Materials and Interfaces, vol. 7, no. 43, pp. 24008-24015, 2015.
  • Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Advanced Materials, vol. 26, no. 37, pp. 6503-6509, 2014.
  • S. Paek, P. Schouwink, E. Athanasopoulou, K. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M. Nazeeruddin, P. Gao, “From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells,” Chemistry of Materials, vol. 29, no. 8, pp. 3490-3498, 2017.
  • J. Christians, J. Manser, P. Kamat, “Multifaceted excited state of CH3NH3PbI3. charge separation, recombination, and trapping,” Journal of Physical Chemistry Letters, vol. 6, pp. 2086-2095, 2015.
  • M. Mehrabian, E. Afshar, “Effect of different hole transport materials on photovoltaic properties in solar cells based on MAPbI3 perovskite,” Bulletin of Materials Science, vol. 44, no. 266, pp. 1-6, 2021.
  • X. Yin, Y. Guo, H. Xie, W. Que, L. Kong, “Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells,” Solar RRL, vol. 3, no. 5, pp. 1-27, 2019.
  • Z. Tseng, L. Chen, C. Chiang, S. Chang, C. Chen, C. Wu, “Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers,” Solar Energy, vol. 139, pp. 484-488, 2016.
  • H. Peng, W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Zhou, Z. Bian, C. Huang, “Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency,” Nano Research, vol. 9, pp. 2960-2971, 2016.
  • S. Chatterjee, A. Pal, “Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures,” Journal of Physical Chemistry C, vol. 120, no. 3, pp. 1428-1437, 2016.
  • A. Shalan, T. Oshikiri, S. Narra, M. Elshanawany, K. Ueno, H. Wu, K. Nakamura, X. Shi, E. Diau, H. Misawa, “Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells,” ACS Applied Materials and Interfaces, vol. 8, no. 49, pp. 33592-33600, 2016.
  • F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, J. You, “Nickel oxide for inverted structure perovskite solar cells,” Journal of Energy Chemistry, vol. 49, pp. 393-411, 2021.
  • H. Alishah, “The influence of cadmium on the photovoltaic performance of CoOx-based MAPbI3 solar cells,” Applied Physics A: Materials Science and Processing, vol. 130, no. 420, pp. 1-12, 2024.
  • A. Huang, L. Lei, Y. Yu, Y. Liu, S. Yang, S. Bao, X. Cao, P. Jin, “Enhanced electrical property of Ni-doped CoOx hole transport layer for inverted perovskite solar cells,” Nanotechnology, vol. 28, no. 20, pp. 1-7, 2017.
  • X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen, B. Cao, “Zinc as a new dopant for NiOx-based planar perovskite solar cells with stable efficiency near 20%,” ACS Applied Energy Materials, vol. 1, no. 8, pp. 3947-3954, 2018.
  • K. Yao, F. Li, Q. He, X. Wang, Y. Jiang, H. Huang, A. Jen, “A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells,” Nano Energy, vol. 40, pp. 155-162, 2017.
  • R. Kaneko, T. Chowdhury, G. Wu, E. Kayesh, S. Kazaoui, K. Sugawa, J. Lee, T. Noda, A. Islam, J. Otsuki, “Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells,” Solar Energy, vol. 181, pp. 243-250, 2019.
  • R. Islam, R. Abdur, A. Alam, N. Munna, A. Ahmed, M. Hossain, M. Bashar, D. Islam, M. Jamal, “Modulating Mn-doped NiO nanoparticles: Structural, optical, and electrical property tailoring for enhanced hole transport layers,” Nanoscale Advances, vol. 7, pp. 133-143, 2025
  • K. Kim, C. Takahashi, Y. Abe, M. Kawamura, “Effects of Cu doping on nickel oxide thin film prepared by sol-gel solution process,” Optik, vol. 125, no. 12, pp. 2899-2901, 2014.
  • Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, Y. Vaynzof, “Small grains as recombination hot spots in perovskite solar cells,” Matter, vol. 4, pp. 1683-1701, 2021.
  • H. Alishah, “The performance of triethanolamine (TEOA)-doped Poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate on MAPbI3-based solar cells,” Optik, vol. 311, pp. 1-12, 2024.
  • W. Kong, F. Zeng, Z. Su, T. Wang, L. Qiao, T. Ye, L. Zhang, R. Sun, J. Barbaud, F. Li, X. Gao, R. Zheng, X. Yang, “Oriented Low-n Ruddlesden-Popper Formamidinium-Based Perovskite for Efficient and Air Stable Solar Cells,” Advanced Energy Materials, vol. 12, no. 46, pp. 1-10, 2022.
  • S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li, S. Luo S, L. Ke, Y. Gao, K. Meng, L. Ding, Y. Yuan, “Rubidium ions enhanced crystallinity for ruddlesden–popper perovskites,” Advanced Science, vol. 7, no. 24, 2002445, 2020.
Year 2025, Volume: 29 Issue: 3, 285 - 292, 26.06.2025
https://doi.org/10.16984/saufenbilder.1663815

Abstract

References

  • J. Yan, B. Saunders, “Third-generation solar cells: A review and comparison of polymer: Fullerene, hybrid polymer and perovskite solar cells,” RSC Advances, vol. 4, pp. 43286-43314, 2014.
  • A. Paulke, S. Stranks, J. Kniepert, J. Kurpiers, C. Wolff, N. Schön, H. Snaith, T. Brenner, D. Neher, “Charge carrier recombination dynamics in perovskite and polymer solar cells,” Applied Physics Letters, vol. 108, 113505, 2016.
  • W. Li, Z. Wang, F. Deschler, S. Gao, R. Friend, A. Cheetham, “Chemically diverse and multifunctional hybrid organic-inorganic perovskites,” Nature Reviews Materials, vol. 2, no. 3, pp. 1-18, 2017.
  • NREL Energy, “Best research cell Efficiency Chart,” [Online]. Available: http://www.nrel.gov/pv/cell-efficiency.html
  • M. Green, “Third generation photovoltaics: Solar cells for 2020 and beyond,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 14, pp. 65-70, 2002.
  • J. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, “Promises and challenges of perovskite solar cells,” Science, vol. 358, pp. 739-744, 2017.
  • R. Singh, V. Shuukla, “ITIC-based bulk heterojunction perovskite film boosting the power conversion efficiency and stability of the perovskite solar cell,” Solar Energy, vol. 178, pp. 90-97, 2019.
  • R. Singh, S. Sandhu, J. Lee, “Elucidating the effect of shunt losses on the performance of mesoporous perovskite solar cells,” Solar Energy, vol. 193, pp. 956-961, 2019.
  • S. Mali, C. Hong, “P-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: Synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides,” Nanoscale, vol. 8, no. 20, pp. 10528-10540, 2016.
  • Y. Yu, D. Zhao, C. Grice, W. Meng, C. Wang, W. Liao, A. Cimaroli, H. Zhang, K. Zhu, Y. Yan, “Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication,” RSC Advances, vol. 6, pp. 90248-90254, 2016.
  • Q. Chen, H. Zhou, Z. Hong, S. Luo, H. Duan, H. Wang, Y. Liu, G. Li, Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
  • J. Pan, C. Mu, Q. Li, W. Li, D. Ma, D. Xu, “Room-Temperature, Hydrochloride-Assisted, One-Step Deposition for Highly Efficient and Air-Stable Perovskite Solar Cells,” Advanced Materials, vol. 28, no. 37, pp. 8309-8314, 2016.
  • G. Wang, D. Liu, J. Xiang, D. Zhou, K. Alameh, B. Ding, Q. Song, “Efficient perovskite solar cell fabricated in ambient air using one-step spin-coating,” RSC Advances, vol. 6, pp. 43299-43303, 2016.
  • S. Ulična, B. Dou, D. Kim, K. Zhu, J. Walls, J. Bowers, M. Van Hest, “Scalable deposition of high-efficiency perovskite solar cells by spray-coating,” ACS Applied Energy Materials, vol. 1, no. 5, pp. 1853-1857, 2018.
  • F. Shao, L. Xu, Z. Tian, Y. Xie, Y. Wang, P. Sheng, D. Wang, F. Huang, “A modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells,” RSC Advances, vol. 6, pp. 42377-42381, 2016.
  • J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, W. Lau, “Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell,” ACS Applied Materials and Interfaces, vol. 7, no. 43, pp. 24008-24015, 2015.
  • Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Advanced Materials, vol. 26, no. 37, pp. 6503-6509, 2014.
  • S. Paek, P. Schouwink, E. Athanasopoulou, K. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M. Nazeeruddin, P. Gao, “From Nano- to Micrometer Scale: The Role of Antisolvent Treatment on High Performance Perovskite Solar Cells,” Chemistry of Materials, vol. 29, no. 8, pp. 3490-3498, 2017.
  • J. Christians, J. Manser, P. Kamat, “Multifaceted excited state of CH3NH3PbI3. charge separation, recombination, and trapping,” Journal of Physical Chemistry Letters, vol. 6, pp. 2086-2095, 2015.
  • M. Mehrabian, E. Afshar, “Effect of different hole transport materials on photovoltaic properties in solar cells based on MAPbI3 perovskite,” Bulletin of Materials Science, vol. 44, no. 266, pp. 1-6, 2021.
  • X. Yin, Y. Guo, H. Xie, W. Que, L. Kong, “Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells,” Solar RRL, vol. 3, no. 5, pp. 1-27, 2019.
  • Z. Tseng, L. Chen, C. Chiang, S. Chang, C. Chen, C. Wu, “Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers,” Solar Energy, vol. 139, pp. 484-488, 2016.
  • H. Peng, W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Zhou, Z. Bian, C. Huang, “Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency,” Nano Research, vol. 9, pp. 2960-2971, 2016.
  • S. Chatterjee, A. Pal, “Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures,” Journal of Physical Chemistry C, vol. 120, no. 3, pp. 1428-1437, 2016.
  • A. Shalan, T. Oshikiri, S. Narra, M. Elshanawany, K. Ueno, H. Wu, K. Nakamura, X. Shi, E. Diau, H. Misawa, “Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells,” ACS Applied Materials and Interfaces, vol. 8, no. 49, pp. 33592-33600, 2016.
  • F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, J. You, “Nickel oxide for inverted structure perovskite solar cells,” Journal of Energy Chemistry, vol. 49, pp. 393-411, 2021.
  • H. Alishah, “The influence of cadmium on the photovoltaic performance of CoOx-based MAPbI3 solar cells,” Applied Physics A: Materials Science and Processing, vol. 130, no. 420, pp. 1-12, 2024.
  • A. Huang, L. Lei, Y. Yu, Y. Liu, S. Yang, S. Bao, X. Cao, P. Jin, “Enhanced electrical property of Ni-doped CoOx hole transport layer for inverted perovskite solar cells,” Nanotechnology, vol. 28, no. 20, pp. 1-7, 2017.
  • X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen, B. Cao, “Zinc as a new dopant for NiOx-based planar perovskite solar cells with stable efficiency near 20%,” ACS Applied Energy Materials, vol. 1, no. 8, pp. 3947-3954, 2018.
  • K. Yao, F. Li, Q. He, X. Wang, Y. Jiang, H. Huang, A. Jen, “A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells,” Nano Energy, vol. 40, pp. 155-162, 2017.
  • R. Kaneko, T. Chowdhury, G. Wu, E. Kayesh, S. Kazaoui, K. Sugawa, J. Lee, T. Noda, A. Islam, J. Otsuki, “Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells,” Solar Energy, vol. 181, pp. 243-250, 2019.
  • R. Islam, R. Abdur, A. Alam, N. Munna, A. Ahmed, M. Hossain, M. Bashar, D. Islam, M. Jamal, “Modulating Mn-doped NiO nanoparticles: Structural, optical, and electrical property tailoring for enhanced hole transport layers,” Nanoscale Advances, vol. 7, pp. 133-143, 2025
  • K. Kim, C. Takahashi, Y. Abe, M. Kawamura, “Effects of Cu doping on nickel oxide thin film prepared by sol-gel solution process,” Optik, vol. 125, no. 12, pp. 2899-2901, 2014.
  • Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, Y. Vaynzof, “Small grains as recombination hot spots in perovskite solar cells,” Matter, vol. 4, pp. 1683-1701, 2021.
  • H. Alishah, “The performance of triethanolamine (TEOA)-doped Poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate on MAPbI3-based solar cells,” Optik, vol. 311, pp. 1-12, 2024.
  • W. Kong, F. Zeng, Z. Su, T. Wang, L. Qiao, T. Ye, L. Zhang, R. Sun, J. Barbaud, F. Li, X. Gao, R. Zheng, X. Yang, “Oriented Low-n Ruddlesden-Popper Formamidinium-Based Perovskite for Efficient and Air Stable Solar Cells,” Advanced Energy Materials, vol. 12, no. 46, pp. 1-10, 2022.
  • S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li, S. Luo S, L. Ke, Y. Gao, K. Meng, L. Ding, Y. Yuan, “Rubidium ions enhanced crystallinity for ruddlesden–popper perovskites,” Advanced Science, vol. 7, no. 24, 2002445, 2020.
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Properties of Condensed Matter, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Pelin Kavak 0000-0002-6902-1577

Early Pub Date June 10, 2025
Publication Date June 26, 2025
Submission Date March 23, 2025
Acceptance Date May 30, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Kavak, P. (2025). Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells. Sakarya University Journal of Science, 29(3), 285-292. https://doi.org/10.16984/saufenbilder.1663815
AMA Kavak P. Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells. SAUJS. June 2025;29(3):285-292. doi:10.16984/saufenbilder.1663815
Chicago Kavak, Pelin. “Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells”. Sakarya University Journal of Science 29, no. 3 (June 2025): 285-92. https://doi.org/10.16984/saufenbilder.1663815.
EndNote Kavak P (June 1, 2025) Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells. Sakarya University Journal of Science 29 3 285–292.
IEEE P. Kavak, “Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells”, SAUJS, vol. 29, no. 3, pp. 285–292, 2025, doi: 10.16984/saufenbilder.1663815.
ISNAD Kavak, Pelin. “Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells”. Sakarya University Journal of Science 29/3 (June 2025), 285-292. https://doi.org/10.16984/saufenbilder.1663815.
JAMA Kavak P. Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells. SAUJS. 2025;29:285–292.
MLA Kavak, Pelin. “Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells”. Sakarya University Journal of Science, vol. 29, no. 3, 2025, pp. 285-92, doi:10.16984/saufenbilder.1663815.
Vancouver Kavak P. Investigating the Copper Doping Effects on the Performance of CoOx Based CH3NH3PbI3 Perovskite Solar Cells. SAUJS. 2025;29(3):285-92.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255  33252  33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .