Research Article
BibTex RIS Cite

Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye

Year 2025, Volume: 29 Issue: 4, 471 - 481, 31.08.2025
https://doi.org/10.16984/saufenbilder.1669693

Abstract

This study employs a comparative Life Cycle Assessment (LCA) methodology and finds the potential environmental impacts of daily road transport in Türkiye. It also assesses the changes in potential impacts from electric vehicle (EV) usage instead of internal combustion engine vehicle (ICEV). The life cycle system boundary is determined as 'well-to-wheel' and 'person.km' is used as the functional unit for comparing different vehicle capacities. The Global Warming Potential (GWP) of the diesel-powered car, gasoline-powered car, and diesel-powered minibus are calculated as 202, 250, and 20.3 gr CO2-eq/person.km respectively. Electric cars reduce the GWP by 56% compared to diesel usage, with an additional 45.8% reduction for the electric minibus. However, the consumption of fossil fuels in electricity production increases the Terrestrial Acidification, Freshwater Eutrophication, and Freshwater Ecotoxicity impacts. Türkiye aims to increase its renewable energy sources by 2035. Changing electricity generation is assessed through a sensitivity analysis. The results show a 40% decrease in TAP and FWEP impacts if the target electricity production is achieved by 2035 compared to today's electricity mix. The study highlights the importance of considering various impact categories in environmental assessments.

References

  • S. Sendilvelan, K. Gomathi, L. Sassykova, and M. Prabhahar, “Port injection of diesel, biodiesel, and petrol in a compression ignition direct injection diesel engine to mitigate nitrogen oxides and soot emissions,” Journal of Chemical Technology and Metallurgy, vol. 59, no. 3, pp. 623–632, 2024.
  • Z. Yue, H. Liu, “Advanced research on internal combustion engines and engine fuels,” Energies, vol. 16, 5940, 2023.
  • G. Senir, A. Büyükkeklik, “Karayolu taşımacılığında sürdürülebilirlik performansının ölçülmesi: Karşılaştırmalı bir analiz,” Business and Management Studies: An International Journal, vol. 11, no. 1, pp. 10–30, 2023.
  • A. O. Dündar, “Türkiye’deki büyükşehirlerin karayolu ulaşımı kaynaklı sera gazı emisyon miktarının karşılaştırmalı analizi,” Doğal Afetler ve Çevre Dergisi, vol. 7, no. 2, pp. 318–337, 2021.
  • T. C. İklim Değişikliği Başkanlığı, “İkli̇m deği̇şi̇kli̇ği̇ azaltim strateji̇si̇ ve eylem plani (2024-2030), 2024,” [Online]. Available: https://iklim.gov.tr/db/turkce/icerikler/files/%C4%B0klim%20De%C4%9Fi%C5%9Fikli%C4%9Fi%20Azalt%C4%B1m%20Stratejisi%20ve%20Eylem%20Plan%C4%B1%20(2024-2030).pdf
  • A. Nickischera, “Environmental impacts of internal combustion engines and electric battery vehicles,” D.U.Quark, vol. 4, no. 2, pp. 21–31, 2020.
  • J. F. Mercure, A. Lam, S. Billington, H. Pollitt, “Integrated assessment modelling as a positive science: Private passenger road transport policies to meet a climate target well below 2∘C,” Climatic Change, vol. 151, pp. 109–129, 2018
  • A. Kurnuç Seyhan, M. Çerçi, “IPCC Tier 1 ve DEFRA metotları ile karbon ayak izinin belirlenmesi: Erzincan Binali Yıldırım Üniversitesi’nin yakıt ve elektrik tüketimi örneği,” Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Dergisi, vol. 26, no. 3, pp. 386–397, 2022.
  • Ç. Timuralp, “Eskişehir ilinde karayolu taşımacılığında yakıt tüketiminden kaynaklanan CO2 emisyonlarının Tier 1 determination and evaluation of CO2 emissions from fuel consumption in road transportation In Eskisehir according to Tier 1 method,” Mühendis ve Makine, vol. 64, no. 711, pp. 194-210, 2023.
  • B. G. Gouveia, M. Donato, M. A. V. da Silva, “Life cycle assessment in road pavement infrastructures: A review,” Civil Engineering Journal, vol. 8, no. 6, pp. 1304–1315, 2022.
  • A. Vargas-Farias, J. Santos, A. Hartmann, F. Van der Pijl, “A life-cycle assessment framework for pavement management considering uncertainties,” in Life-Cycle of Structures and Infrastructure Systems, 1st ed., CRC Press, pp. 965–972, 2023.
  • D. Demirtürk, “Sürdürülebilir ulaşımda sera gazı etki̇si̇ni̇ azaltmaya yöneli̇k çalışmalar,” Mühendislik Bilimleri ve Tasarım Dergisi, vol. 9, no. 4, pp. 1080–1092, 2021.
  • A. O. Dündar, A. Kolay, “Karayolu yük ve yolcu taşımacılığının çevresel sürdürülebilirlik bakımından değerlendirilmesi ve konya ili sera gazı emisyonunun hesaplanması,” Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 14, no. 1, pp. 317–334, pp. 317-334, 2021.
  • Otomotiv Sanayii Derneği (OSD), “Turkish Automotive Industry Sustainability Report,” 2020, [Online]. Available: https://www.osd.org.tr/saved-files/PDF/2022/02/18/OSD_SRDE_2020.pdf
  • F. G. Üçtuğ, “Türkiye’de üretilen elektrikli ve içten yanmalı motorlu araçların karşılaştırmalı çevresel yaşam döngüsü değerlendirmesi,” Düzce Üniversitesi Bilim ve Teknol. Derg., vol. 10, pp. 1701–1714, 2022.
  • C. Coskun, Z. Oktay, “Carbon footprint prediction of vehicle usage in Turkey,” Greenh. Gases Sci. Technol., vol. 10, pp. 736–758, 2020.
  • P. Mock, “The automotive sector in Turkey: A baseline analysis of vehicle fleet structure, fuel consumption and emissions,” Icct, 2016. [Online]. Available: https://theicct.org/sites/default/files/publications/ICCT_Turkish-fleet-baseline_20160318.pdf.
  • T. D. Güzel, K. Alp, “Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050,” Atmos. Pollut. Res., vol. 11, pp. 2190–2201, 2020.
  • H. Sahin, H. Esen, “Well-to-wheel emissions of electric vehicles in Türkiye and emission mitigation by renewable penetration,” Renew. Energy, vol. 235, p. 121344, 2024.
  • M. Shafique, A. Azam, M. Rafiq, X. Luo, “Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong,” Research in Transportation Economics, vol. 91, p. 101112, 2022.
  • C. C. Ternel, A. Bouter, J. Melgar, “Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030,” Transportation Research Part D: Transport and Environment, vol. 97, p. 102897, 2021.
  • T. Peng, L. Ren, X. Ou, “Development and application of life-cycle energy consumption and carbon footprint analysis model for passenger vehicles in China,” Energy, vol. 282, p. 128412, 2023.
  • Opel, https://www.opel.com.tr/elektrik-teknolojisi/sarj-cozumleri-ve-menzil/guc-tuketimi.html#:~:text=Elektrikli Corsa’nın tüketimi 100,4 kWh (WLTP) civarındadır. Accessed:10.03.2025
  • BMW, https://www.bmw.com.tr/tr/elektrikli-otomobiller.html#sss. Accessed:10.03.2025
  • Hyundai, https://www.hyundai.com/tr/tr/elektrifikasyon-teknolojisi/elektrifikasyon/maliyetler. Accessed:10.03.2025
  • Togg, https://www.togg.com.tr/t10x. Accessed:10.03.2025
  • Tesla, https://dolubatarya.com/2023-tesla-model-y-long-range-awd. Accessed:10.03.2025
  • Toraşarj, https://torasarj.com/haberler/ford-e-transit-100-kmde-ne-yakar/#:~:text=Yerli üretim Ford E-Transit,ortalama 11 litre dizel tüketir. Accessed:10.03.2025
  • H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “2006 IPCC guidelines for national greenhouse gas inventories,” National Greenhouse Gas Inventories Programme, IGES, Japan, 2006.
  • European Commission, “Commission Regulation (EU) No 459/2012 of 29 May 2012 amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 6),” 2012. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012R0459.
  • European Commission, “Commission Regulation (EU) 2016/646 of 20 April 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 6),” [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0646.
  • Türkiye Cumhuriyeti Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Ulusal Enerji Planı, 2022,” 2022, [Online]. Available: https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar/TUEP/Türkiye_Ulusal_Enerji_Planı.pdf.

Year 2025, Volume: 29 Issue: 4, 471 - 481, 31.08.2025
https://doi.org/10.16984/saufenbilder.1669693

Abstract

References

  • S. Sendilvelan, K. Gomathi, L. Sassykova, and M. Prabhahar, “Port injection of diesel, biodiesel, and petrol in a compression ignition direct injection diesel engine to mitigate nitrogen oxides and soot emissions,” Journal of Chemical Technology and Metallurgy, vol. 59, no. 3, pp. 623–632, 2024.
  • Z. Yue, H. Liu, “Advanced research on internal combustion engines and engine fuels,” Energies, vol. 16, 5940, 2023.
  • G. Senir, A. Büyükkeklik, “Karayolu taşımacılığında sürdürülebilirlik performansının ölçülmesi: Karşılaştırmalı bir analiz,” Business and Management Studies: An International Journal, vol. 11, no. 1, pp. 10–30, 2023.
  • A. O. Dündar, “Türkiye’deki büyükşehirlerin karayolu ulaşımı kaynaklı sera gazı emisyon miktarının karşılaştırmalı analizi,” Doğal Afetler ve Çevre Dergisi, vol. 7, no. 2, pp. 318–337, 2021.
  • T. C. İklim Değişikliği Başkanlığı, “İkli̇m deği̇şi̇kli̇ği̇ azaltim strateji̇si̇ ve eylem plani (2024-2030), 2024,” [Online]. Available: https://iklim.gov.tr/db/turkce/icerikler/files/%C4%B0klim%20De%C4%9Fi%C5%9Fikli%C4%9Fi%20Azalt%C4%B1m%20Stratejisi%20ve%20Eylem%20Plan%C4%B1%20(2024-2030).pdf
  • A. Nickischera, “Environmental impacts of internal combustion engines and electric battery vehicles,” D.U.Quark, vol. 4, no. 2, pp. 21–31, 2020.
  • J. F. Mercure, A. Lam, S. Billington, H. Pollitt, “Integrated assessment modelling as a positive science: Private passenger road transport policies to meet a climate target well below 2∘C,” Climatic Change, vol. 151, pp. 109–129, 2018
  • A. Kurnuç Seyhan, M. Çerçi, “IPCC Tier 1 ve DEFRA metotları ile karbon ayak izinin belirlenmesi: Erzincan Binali Yıldırım Üniversitesi’nin yakıt ve elektrik tüketimi örneği,” Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Dergisi, vol. 26, no. 3, pp. 386–397, 2022.
  • Ç. Timuralp, “Eskişehir ilinde karayolu taşımacılığında yakıt tüketiminden kaynaklanan CO2 emisyonlarının Tier 1 determination and evaluation of CO2 emissions from fuel consumption in road transportation In Eskisehir according to Tier 1 method,” Mühendis ve Makine, vol. 64, no. 711, pp. 194-210, 2023.
  • B. G. Gouveia, M. Donato, M. A. V. da Silva, “Life cycle assessment in road pavement infrastructures: A review,” Civil Engineering Journal, vol. 8, no. 6, pp. 1304–1315, 2022.
  • A. Vargas-Farias, J. Santos, A. Hartmann, F. Van der Pijl, “A life-cycle assessment framework for pavement management considering uncertainties,” in Life-Cycle of Structures and Infrastructure Systems, 1st ed., CRC Press, pp. 965–972, 2023.
  • D. Demirtürk, “Sürdürülebilir ulaşımda sera gazı etki̇si̇ni̇ azaltmaya yöneli̇k çalışmalar,” Mühendislik Bilimleri ve Tasarım Dergisi, vol. 9, no. 4, pp. 1080–1092, 2021.
  • A. O. Dündar, A. Kolay, “Karayolu yük ve yolcu taşımacılığının çevresel sürdürülebilirlik bakımından değerlendirilmesi ve konya ili sera gazı emisyonunun hesaplanması,” Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 14, no. 1, pp. 317–334, pp. 317-334, 2021.
  • Otomotiv Sanayii Derneği (OSD), “Turkish Automotive Industry Sustainability Report,” 2020, [Online]. Available: https://www.osd.org.tr/saved-files/PDF/2022/02/18/OSD_SRDE_2020.pdf
  • F. G. Üçtuğ, “Türkiye’de üretilen elektrikli ve içten yanmalı motorlu araçların karşılaştırmalı çevresel yaşam döngüsü değerlendirmesi,” Düzce Üniversitesi Bilim ve Teknol. Derg., vol. 10, pp. 1701–1714, 2022.
  • C. Coskun, Z. Oktay, “Carbon footprint prediction of vehicle usage in Turkey,” Greenh. Gases Sci. Technol., vol. 10, pp. 736–758, 2020.
  • P. Mock, “The automotive sector in Turkey: A baseline analysis of vehicle fleet structure, fuel consumption and emissions,” Icct, 2016. [Online]. Available: https://theicct.org/sites/default/files/publications/ICCT_Turkish-fleet-baseline_20160318.pdf.
  • T. D. Güzel, K. Alp, “Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050,” Atmos. Pollut. Res., vol. 11, pp. 2190–2201, 2020.
  • H. Sahin, H. Esen, “Well-to-wheel emissions of electric vehicles in Türkiye and emission mitigation by renewable penetration,” Renew. Energy, vol. 235, p. 121344, 2024.
  • M. Shafique, A. Azam, M. Rafiq, X. Luo, “Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong,” Research in Transportation Economics, vol. 91, p. 101112, 2022.
  • C. C. Ternel, A. Bouter, J. Melgar, “Life cycle assessment of mid-range passenger cars powered by liquid and gaseous biofuels: Comparison with greenhouse gas emissions of electric vehicles and forecast to 2030,” Transportation Research Part D: Transport and Environment, vol. 97, p. 102897, 2021.
  • T. Peng, L. Ren, X. Ou, “Development and application of life-cycle energy consumption and carbon footprint analysis model for passenger vehicles in China,” Energy, vol. 282, p. 128412, 2023.
  • Opel, https://www.opel.com.tr/elektrik-teknolojisi/sarj-cozumleri-ve-menzil/guc-tuketimi.html#:~:text=Elektrikli Corsa’nın tüketimi 100,4 kWh (WLTP) civarındadır. Accessed:10.03.2025
  • BMW, https://www.bmw.com.tr/tr/elektrikli-otomobiller.html#sss. Accessed:10.03.2025
  • Hyundai, https://www.hyundai.com/tr/tr/elektrifikasyon-teknolojisi/elektrifikasyon/maliyetler. Accessed:10.03.2025
  • Togg, https://www.togg.com.tr/t10x. Accessed:10.03.2025
  • Tesla, https://dolubatarya.com/2023-tesla-model-y-long-range-awd. Accessed:10.03.2025
  • Toraşarj, https://torasarj.com/haberler/ford-e-transit-100-kmde-ne-yakar/#:~:text=Yerli üretim Ford E-Transit,ortalama 11 litre dizel tüketir. Accessed:10.03.2025
  • H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, “2006 IPCC guidelines for national greenhouse gas inventories,” National Greenhouse Gas Inventories Programme, IGES, Japan, 2006.
  • European Commission, “Commission Regulation (EU) No 459/2012 of 29 May 2012 amending Regulation (EC) No 715/2007 of the European Parliament and of the Council and Commission Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 6),” 2012. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32012R0459.
  • European Commission, “Commission Regulation (EU) 2016/646 of 20 April 2016 amending Regulation (EC) No 692/2008 as regards emissions from light passenger and commercial vehicles (Euro 6),” [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0646.
  • Türkiye Cumhuriyeti Enerji ve Tabii Kaynaklar Bakanlığı, “Türkiye Ulusal Enerji Planı, 2022,” 2022, [Online]. Available: https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar/TUEP/Türkiye_Ulusal_Enerji_Planı.pdf.
There are 32 citations in total.

Details

Primary Language English
Subjects Global Environmental Engineering
Journal Section Research Articles
Authors

Ahsen Akbulut Uludağ 0000-0002-1320-5975

Early Pub Date August 28, 2025
Publication Date August 31, 2025
Submission Date April 3, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Akbulut Uludağ, A. (2025). Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye. Sakarya University Journal of Science, 29(4), 471-481. https://doi.org/10.16984/saufenbilder.1669693
AMA Akbulut Uludağ A. Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye. SAUJS. August 2025;29(4):471-481. doi:10.16984/saufenbilder.1669693
Chicago Akbulut Uludağ, Ahsen. “Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye”. Sakarya University Journal of Science 29, no. 4 (August 2025): 471-81. https://doi.org/10.16984/saufenbilder.1669693.
EndNote Akbulut Uludağ A (August 1, 2025) Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye. Sakarya University Journal of Science 29 4 471–481.
IEEE A. Akbulut Uludağ, “Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye”, SAUJS, vol. 29, no. 4, pp. 471–481, 2025, doi: 10.16984/saufenbilder.1669693.
ISNAD Akbulut Uludağ, Ahsen. “Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye”. Sakarya University Journal of Science 29/4 (August2025), 471-481. https://doi.org/10.16984/saufenbilder.1669693.
JAMA Akbulut Uludağ A. Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye. SAUJS. 2025;29:471–481.
MLA Akbulut Uludağ, Ahsen. “Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye”. Sakarya University Journal of Science, vol. 29, no. 4, 2025, pp. 471-8, doi:10.16984/saufenbilder.1669693.
Vancouver Akbulut Uludağ A. Life Cycle Assessment and Future Scenario Analysis of Internal Combustion and Electric Road Vehicles in the Context of Türkiye. SAUJS. 2025;29(4):471-8.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255    33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .