Review
BibTex RIS Cite

SARS COV-2 (COVİD-19) YÖNETİMİNDE ÇİNKO, BAKIR, SELENYUM VE MAGNEZYUMUN ETKİNLİĞİ VE ÖNEMİ

Year 2021, Volume: 4 Issue: 3, 167 - 182, 28.12.2021
https://doi.org/10.54803/sauhsd.823643

Abstract

Şiddetli Akut Solunum Sendromu Koronavirüs 2 enfeksiyonu (SARS-CoV-2 / COVID-19) Aralık 2019’da Çin’in Wuhan şehrinde ortaya çıkmıştır. Pandemi halini alarak birçok ölüme neden olmuştur. Enfekte insandan, insana damlacık yolu ile ağız, burun ve göz mukozasında bulaşabilmektedir. Öksürük, ateş, halsizlik gibi kişiye göre değişen birçok belirti bulunmaktadır. Selenyum, çinko, bakır ve magnezyumun özellikle antioksidan ve antiviral etkilerinin COVID-19sürecinde mücadelede etkili olabileceği bildirilmiştir. Bu minerallerin serum düzeylerinin düşük olması hastalığa yakalanma ve hastalık belirtilerinin şiddetlenmesi ile ilişkili olduğu belirtilmiştir. COVID-19tedavi sürecinde hastaneye yatan hastaların serum minerallerinin incelenmesi ve varsa eksikliklerin giderilmesi önerilmektedir. Bu derlemede selenyum, çinko, bakır ve magnezyumun COVID-19ile ilgili etkileri güncel bilgilerle incelenmiştir.

Supporting Institution

Bulunmamaktadır.

References

  • World Health Organization (WHO). Q & A on coronaviruses (COVID-19). https://www.who.int/news-room/q-a-detail/q-a-coronaviruses.(Erişim Tarihi: 25 Haziran 2021).
  • World Health Organization (WHO). WHO Coronavirus Disease (COVID-19)Dashboard. https://covid19.who.int/. (Erişim tarihi: 25 Haziran 2021).
  • Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized Pa- tients with COVID-19: a systematic review and meta- analysis. Arch Archives of Academic Emergency Medicine. 2020;8(1):e35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096724/. Erişim Tarihi 12 Ekim 2020.
  • Thomas R, Wang W, Su D. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immunity and Ageing. 2020;17(2):1–17. doi: 10.1186/s12979-020-0173-8. BMC (Epub 2020 Jan 20).
  • Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of 50466 hospitalized patients with 2019‐nCoV infection. Journal of Medical Virology. 2020. doi: 10.1101/2020.02.18.20024539.
  • Li J, Chen Z, Nie Y, Ma Y, Guo Q, Dai, X. Prognostic symptoms on COVID-19severity. Journal of Medicine Internet Research. 2020;22(6):e19636 doi: 10.2196/19636. Pubmed PMID: 32544071.
  • Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, Mayhew S. The COVID-19vaccine development landscape. Nature Reviews Drug Discovery. 2020;19;305-306. doi: 10.1038/d41573-020-00073-5.
  • Centers for Disease Control and Prevention(CDC). Coronavirus (Covid-19). https://www.cdc.gov/coronavirus/2019-ncov/. (Erişim Tarihi: 12 Ekim 2020).
  • Karaağaç Y, Koyu EB. Viral Enfeksiyonlarda Vitamin ve Mineraller: COVID-19Odağında Bir Derleme. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi. 2020;5(2):165-173.
  • Muslu M, Ersü DÖ. Yeni Koronavirüs (SARS-CoV-2/COVID-19) Pandemisi Sırasında Beslenme Tedavisi ve Önemi. Beslenme ve Diyet Dergisi. 2020;48(1):73-82. doi: 10.33076/2020.BDD.1341.
  • Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system – working in harmony to reduce the risk of infection. Nutrition. 2020;12(1):236. doi: 10.3390/nu12010236.
  • Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrition. 2018;10(10):1531. doi: 10.3390/nu10101531.
  • Hamulka J, Jeruszka-Bielak M, Górnicka M, Drywień ME, Zielinska-Pukos MA. Dietary Supplements during COVID-19Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19Online Studies. Nutrients. 2021;13(1):54.
  • Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clinical Nutrition. 2020;39(6):1631–1638. doi: 10.1016/j.clnu.2020.03.022.
  • National Institute of Health (NIH), Food and Nutrition Board. https://ods.od.nih.gov/factsheets/list-all/. (Erişim Tarihi: 12 Ekim 2020).
  • National Institute of Health (NIH), Food and Nutrition Board. https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/. (Erişim Tarihi: 12 Ekim 2020).
  • Janciauskiene S. The beneficial effects of antioxidants in health and diseases. Chronic Obstructive Pulmonary Diseases. 2020;7(3):182-202. doi: 10.15326/jcopdf.7.3.2019.0152.
  • Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko S, et al. Zinc and respiratory tract infections: Perspectives for COVID 19. International Journal of Molecular Medicine. 2020;46:17-26. doi: 10.3892/ijmm.2020.4575.
  • Singh S, Singh RK. Assessing the role of zinc in COVID-19infections and mortality in european countries: Is zinc deficiency a risk factor for COVID 19? Journal of Scientific Research. 2020;64(2):153-157. doi: 10.37398/JSR.2020.640222.
  • Bauer SR, Kapoor A, Rath M, Thomas SA. What is the role of supplementation with ascorbic acid, zinc, vitamin D or N-acetylcysteine for prevention or treatment of COVID-19? Cleveland Clinic Journal of Medicine. 2020. doi: 10.3949/ccjm.87a.ccc046. PMID: 32513807.
  • Mossink JP. Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutrition, Prevention and Health. 2020;3. doi: 10.1136/bmjnph-2020-000095.
  • Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology. 2020;38:1-9. doi: 10.12932/AP-200220-0772.
  • Abdel-Mottaleb MS, Abdel-Mottaleb Y. In search for effective and safe drugs against SARS-CoV-2: Part II] The role of selected salts and organometallics of copper, zinc, selenium, and iodine food supplements. ChemRxiv. doi: 10.26434/chemrxiv.12234743.v1.
  • Velthuis AJW, Worm SHE, Sims AC, Baric RS, Snijder EJ, Hemert MJ, et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathogens. 2010;6:e1001176. doi: 10.1371/journal.ppat.1001176.
  • Finzi E, Harrington A. Zinc treatment of outpatient COVID‐19: A retrospective review of 28 consecutive patients. Journal of Medical Virology. 2021. doi: 10.1002/jmv.26812
  • Vogel-González M, Talló-Parra M, Herrera-Fernández V, Pérez-Vilaró G, Chillón M, Nogués X, et al. Low zinc levels at clinical admission associates with poor outcomes in COVID-19. Nutrients. 2021;13(2):562. doi: 10.3390/nu13020562
  • Carlucci P, Ahuja T, Petrilli CM, Rajagopalan H, Jones S, Rahimian J. Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19patients. medRxiv. doi: 10.1101/2020.05.02.20080036.
  • Thomas S, Patel D, Bittel B, Wolski K, Wang Q, Kumar A, et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA network open. 2021;4(2):e210369-e210369.
  • Joachimiak MP.Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis. 2021;15(1):e0008895. doi: 10.1371/journal.pntd.0008895
  • Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19crisis. Clinical Nutrition ESPEN. 2020;38:65-66. doi: 10.1016/j.clnesp.2020.06.003.
  • Sharma L. Dietary management to build adaptive immunity against COVID-19. Journal of PeerScientist. 2020:2(2);e1000016.
  • Hopkins RG, Failla ML . Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. Journal of Nutrition. 1997;127(2):257-262. doi: 10.1093/jn/127.2.257.
  • Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research. 2015;115:21-38. doi: 10.1016/j.antiviral.2014.12.015.
  • Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19patients? Medical Hypotheses. 2020;142:109814. doi: 10.1016/j.mehy.2020.109814.
  • Fooladi S, Matin S, Mahmoodpoor A. Copper as a potential adjunct therapy for critically ill COVID-19patients. Clinical nutrition ESPEN, 2020;40:90-91.
  • Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. in vivo. 2020;34(3 suppl):1567-1588.doi: 10.21873/invivo.11946
  • Mittra I, de Souza R, Bhadade R, Madke T, Shankpal PD, Joshi M, et al. Resveratrol and Copper for treatment of severe COVID-19: an observational study (RESCU 002). medRxiv. 2020. doi: 10.1101/2020.07.21.20151423
  • Patil S, Us VR, Arakeri G, Patil S, Brennan PA. Does Yadgir population have copper-mediated intrinsic immunity to resist COVID-19challenge?. Medical hypotheses. 2021;146:110362. doi: 10.1016/j.mehy.2020.110362.
  • Calder PC. Nutrition, immunity and Covid-19. BMJ Nutrition, Prevention and Health. 2020. doi: 10.1136/bmjnph-2020-000085.
  • Scully JR. The COVID-19Pandemic, part 1: can antimicrobial copper-based alloys help suppress infectious transmission of viruses originating from human contact with high-touch surfaces? Corrosion. 2020;76:6:523-527. doi: 10.5006/3568.
  • Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine. 2020;382:1564-1567. doi: 10.1056/NEJMc2004973.
  • Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. MBio. 2015;6(6):e01697-15. doi: 10.1128/mBio.01697-15.
  • Warnes SL, Keevil CW. Mechanism of copper surface toxicity in vancomycin resistant enterococci following wet or dry surface contact. Applied and Environmental Microbiology. 2011;77(17):6049-6059. doi: 10.1128/AEM.00597-11.
  • Coutureau C, Pascard M, Kanagaratnam L, Jolly D, de Champs C. Does Copper Prevent Nosocomial Transmission of COVID-19?. Journal of the American Medical Directors Association. 2021;22(1):219–220. doi: 10.1016/j.jamda.2020.10.029
  • Cortes AA, Zuñiga JM. The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review. Diagnostic microbiology and infectious disease. 2020;98(4):115176. doi: 10.1016/j.diagmicrobio.2020.115176
  • Bermano G, Méplan C, Mercer D, Hesketh J. Selenium and viral infection: Are there lessons for COVID-19? British Journal of Nutrition. 20121;125(6):618-627. doi:10.1017/S0007114520003128
  • Alpert PT. The role of vitamins and minerals on the immune system. Home Health Care Management and Practice. 2017;29:199–202. doi: 10.1177/1084822317713300.
  • Saeed F, Nadeem M, Ahmed RS, Tahir Nadeem M, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds—A review. Food and Agricultural Immunology. 2016;27:205–229. doi: 10.1080/09540105.2015.1079600.
  • Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256-1268. doi: 10.1016/S0140-6736(11)61452-9.
  • Taylor E, Johal A, Smith P, Wong P, Feng K, Pinillos F. Dr. Ethan Taylor: COVID-19and selenium—below the radar conversations. http://summit.sfu.ca/item/20378. (Erişim Tarihi: 09 Kasım 2020).
  • Majeed M, Nagabhushanam K, Gowda S, Mundkur L. An exploratory study of selenium status in healthy individuals and in patients with COVID-19in a south Indian population: The case for adequate selenium status. Nutrition. 2021;82:111053.
  • Liu Q, Zhao X, Ma J, Mu Y, Wang Y, Yang S, et al. Selenium (Se) plays a key role in the biological effects of some viruses: Implications for COVID-19. Environmental research. 2021;196:110984.
  • Lee YH, Lee SJ, Lee MK, Lee WY, Yong SJ, Kim SH. Serum selenium levels in patients with respiratory diseases: A prospective observational study. Journal of Thoracic Disease. 2016;8(8):2068–2078. doi: 10.21037/jtd.2016.07.60.
  • Manzanares W, Moreira E, Hardy G. Pharmaconutrition revisited for critically ill patients with coronavirus disease 2019 (COVID-19): Does selenium have a place?. Nutrition. 2021;81:110989.
  • Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Medical Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878.
  • Fakhrolmobasheri M, Nasr-Esfahany Z, Khanahmad H, Zeinalian M. Selenium supplementation can relieve the clinical complications of COVID-19and other similar viral infections. International Journal for Vitamin and Nutrition Research. 2020;1(1):1-3. doi: 10.1024/0300-9831/a000663.
  • De Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiological Reviews. 2015;95(1):1-46. doi: 10.1152/physrev.00012.2014.
  • Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. Journal of Inflammation Research. 2018;11:25-34. doi: 10.2147/JIR.S136742.
  • DiNicolantonio JJ, O’Keefe JH, Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018;5:e000668. doi: 10.1136/openhrt-2017-000668.
  • Tarleton EK. Factors influencing magnesium consumption among adults in the United States. Nutrition Reviews. 2018;76(7):526-538. doi: 10.1093/nutrit/nuy002.
  • Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnesium Research. 2020. doi: 10.1684/mrh.2020.0465.
  • Van Kempen TA, Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. American Journal of Physiology-Endocrinology and Metabolism. 2021;320(1):E2-E6.
  • DiNicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19patients. Missouri Medicine. 2021;118(1):68-73.

EFFECTIVENESS AND IMPORTANCE OF ZINC, COPPER, SELENIUM AND MAGNESIUM IN MANAGEMENT OF SARS COV-2 (COVİD-19)

Year 2021, Volume: 4 Issue: 3, 167 - 182, 28.12.2021
https://doi.org/10.54803/sauhsd.823643

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 infection (SARS-CoV-2 / COVID-19) surfaced in Wuhan, China in December 2019. Then, COVID-19has been declared as a global pandemic, causing mortality. A clinical sign of COVID-19 can be seen from human to human with infected oral, nasal and eye mucosa by droplet particles. The clinical signs of COVID-19 such as fever, fatigue and cough can be varied according to human. It was indicated that selenium, zinc, copper and magnesium, as antioxidant and antiviral agents, can be effective in COVID-19treatment. Moreover, it was stated that lower serum levels of these minerals were related to increments of disease symptoms. It has been suggested to examine serum minerals status of hospitalized patients and implement appropriate treatment if there is a deficiency during COVID-19 treatment. In this review, it was investigated the COVID-19 related effects of selenium, zinc, copper and magnesium.

References

  • World Health Organization (WHO). Q & A on coronaviruses (COVID-19). https://www.who.int/news-room/q-a-detail/q-a-coronaviruses.(Erişim Tarihi: 25 Haziran 2021).
  • World Health Organization (WHO). WHO Coronavirus Disease (COVID-19)Dashboard. https://covid19.who.int/. (Erişim tarihi: 25 Haziran 2021).
  • Emami A, Javanmardi F, Pirbonyeh N, Akbari A. Prevalence of underlying diseases in hospitalized Pa- tients with COVID-19: a systematic review and meta- analysis. Arch Archives of Academic Emergency Medicine. 2020;8(1):e35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096724/. Erişim Tarihi 12 Ekim 2020.
  • Thomas R, Wang W, Su D. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immunity and Ageing. 2020;17(2):1–17. doi: 10.1186/s12979-020-0173-8. BMC (Epub 2020 Jan 20).
  • Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of 50466 hospitalized patients with 2019‐nCoV infection. Journal of Medical Virology. 2020. doi: 10.1101/2020.02.18.20024539.
  • Li J, Chen Z, Nie Y, Ma Y, Guo Q, Dai, X. Prognostic symptoms on COVID-19severity. Journal of Medicine Internet Research. 2020;22(6):e19636 doi: 10.2196/19636. Pubmed PMID: 32544071.
  • Le TT, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, Mayhew S. The COVID-19vaccine development landscape. Nature Reviews Drug Discovery. 2020;19;305-306. doi: 10.1038/d41573-020-00073-5.
  • Centers for Disease Control and Prevention(CDC). Coronavirus (Covid-19). https://www.cdc.gov/coronavirus/2019-ncov/. (Erişim Tarihi: 12 Ekim 2020).
  • Karaağaç Y, Koyu EB. Viral Enfeksiyonlarda Vitamin ve Mineraller: COVID-19Odağında Bir Derleme. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi. 2020;5(2):165-173.
  • Muslu M, Ersü DÖ. Yeni Koronavirüs (SARS-CoV-2/COVID-19) Pandemisi Sırasında Beslenme Tedavisi ve Önemi. Beslenme ve Diyet Dergisi. 2020;48(1):73-82. doi: 10.33076/2020.BDD.1341.
  • Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system – working in harmony to reduce the risk of infection. Nutrition. 2020;12(1):236. doi: 10.3390/nu12010236.
  • Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements change over the life course. Nutrition. 2018;10(10):1531. doi: 10.3390/nu10101531.
  • Hamulka J, Jeruszka-Bielak M, Górnicka M, Drywień ME, Zielinska-Pukos MA. Dietary Supplements during COVID-19Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19Online Studies. Nutrients. 2021;13(1):54.
  • Barazzoni R, Bischoff SC, Breda J, Wickramasinghe K, Krznaric Z, Nitzan D. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clinical Nutrition. 2020;39(6):1631–1638. doi: 10.1016/j.clnu.2020.03.022.
  • National Institute of Health (NIH), Food and Nutrition Board. https://ods.od.nih.gov/factsheets/list-all/. (Erişim Tarihi: 12 Ekim 2020).
  • National Institute of Health (NIH), Food and Nutrition Board. https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/. (Erişim Tarihi: 12 Ekim 2020).
  • Janciauskiene S. The beneficial effects of antioxidants in health and diseases. Chronic Obstructive Pulmonary Diseases. 2020;7(3):182-202. doi: 10.15326/jcopdf.7.3.2019.0152.
  • Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko S, et al. Zinc and respiratory tract infections: Perspectives for COVID 19. International Journal of Molecular Medicine. 2020;46:17-26. doi: 10.3892/ijmm.2020.4575.
  • Singh S, Singh RK. Assessing the role of zinc in COVID-19infections and mortality in european countries: Is zinc deficiency a risk factor for COVID 19? Journal of Scientific Research. 2020;64(2):153-157. doi: 10.37398/JSR.2020.640222.
  • Bauer SR, Kapoor A, Rath M, Thomas SA. What is the role of supplementation with ascorbic acid, zinc, vitamin D or N-acetylcysteine for prevention or treatment of COVID-19? Cleveland Clinic Journal of Medicine. 2020. doi: 10.3949/ccjm.87a.ccc046. PMID: 32513807.
  • Mossink JP. Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutrition, Prevention and Health. 2020;3. doi: 10.1136/bmjnph-2020-000095.
  • Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology. 2020;38:1-9. doi: 10.12932/AP-200220-0772.
  • Abdel-Mottaleb MS, Abdel-Mottaleb Y. In search for effective and safe drugs against SARS-CoV-2: Part II] The role of selected salts and organometallics of copper, zinc, selenium, and iodine food supplements. ChemRxiv. doi: 10.26434/chemrxiv.12234743.v1.
  • Velthuis AJW, Worm SHE, Sims AC, Baric RS, Snijder EJ, Hemert MJ, et al. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathogens. 2010;6:e1001176. doi: 10.1371/journal.ppat.1001176.
  • Finzi E, Harrington A. Zinc treatment of outpatient COVID‐19: A retrospective review of 28 consecutive patients. Journal of Medical Virology. 2021. doi: 10.1002/jmv.26812
  • Vogel-González M, Talló-Parra M, Herrera-Fernández V, Pérez-Vilaró G, Chillón M, Nogués X, et al. Low zinc levels at clinical admission associates with poor outcomes in COVID-19. Nutrients. 2021;13(2):562. doi: 10.3390/nu13020562
  • Carlucci P, Ahuja T, Petrilli CM, Rajagopalan H, Jones S, Rahimian J. Hydroxychloroquine and azithromycin plus zinc vs hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19patients. medRxiv. doi: 10.1101/2020.05.02.20080036.
  • Thomas S, Patel D, Bittel B, Wolski K, Wang Q, Kumar A, et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: the COVID A to Z randomized clinical trial. JAMA network open. 2021;4(2):e210369-e210369.
  • Joachimiak MP.Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis. 2021;15(1):e0008895. doi: 10.1371/journal.pntd.0008895
  • Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19crisis. Clinical Nutrition ESPEN. 2020;38:65-66. doi: 10.1016/j.clnesp.2020.06.003.
  • Sharma L. Dietary management to build adaptive immunity against COVID-19. Journal of PeerScientist. 2020:2(2);e1000016.
  • Hopkins RG, Failla ML . Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. Journal of Nutrition. 1997;127(2):257-262. doi: 10.1093/jn/127.2.257.
  • Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research. 2015;115:21-38. doi: 10.1016/j.antiviral.2014.12.015.
  • Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19patients? Medical Hypotheses. 2020;142:109814. doi: 10.1016/j.mehy.2020.109814.
  • Fooladi S, Matin S, Mahmoodpoor A. Copper as a potential adjunct therapy for critically ill COVID-19patients. Clinical nutrition ESPEN, 2020;40:90-91.
  • Andreou A, Trantza S, Filippou D, Sipsas N, Tsiodras S. COVID-19: The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. in vivo. 2020;34(3 suppl):1567-1588.doi: 10.21873/invivo.11946
  • Mittra I, de Souza R, Bhadade R, Madke T, Shankpal PD, Joshi M, et al. Resveratrol and Copper for treatment of severe COVID-19: an observational study (RESCU 002). medRxiv. 2020. doi: 10.1101/2020.07.21.20151423
  • Patil S, Us VR, Arakeri G, Patil S, Brennan PA. Does Yadgir population have copper-mediated intrinsic immunity to resist COVID-19challenge?. Medical hypotheses. 2021;146:110362. doi: 10.1016/j.mehy.2020.110362.
  • Calder PC. Nutrition, immunity and Covid-19. BMJ Nutrition, Prevention and Health. 2020. doi: 10.1136/bmjnph-2020-000085.
  • Scully JR. The COVID-19Pandemic, part 1: can antimicrobial copper-based alloys help suppress infectious transmission of viruses originating from human contact with high-touch surfaces? Corrosion. 2020;76:6:523-527. doi: 10.5006/3568.
  • Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine. 2020;382:1564-1567. doi: 10.1056/NEJMc2004973.
  • Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. MBio. 2015;6(6):e01697-15. doi: 10.1128/mBio.01697-15.
  • Warnes SL, Keevil CW. Mechanism of copper surface toxicity in vancomycin resistant enterococci following wet or dry surface contact. Applied and Environmental Microbiology. 2011;77(17):6049-6059. doi: 10.1128/AEM.00597-11.
  • Coutureau C, Pascard M, Kanagaratnam L, Jolly D, de Champs C. Does Copper Prevent Nosocomial Transmission of COVID-19?. Journal of the American Medical Directors Association. 2021;22(1):219–220. doi: 10.1016/j.jamda.2020.10.029
  • Cortes AA, Zuñiga JM. The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review. Diagnostic microbiology and infectious disease. 2020;98(4):115176. doi: 10.1016/j.diagmicrobio.2020.115176
  • Bermano G, Méplan C, Mercer D, Hesketh J. Selenium and viral infection: Are there lessons for COVID-19? British Journal of Nutrition. 20121;125(6):618-627. doi:10.1017/S0007114520003128
  • Alpert PT. The role of vitamins and minerals on the immune system. Home Health Care Management and Practice. 2017;29:199–202. doi: 10.1177/1084822317713300.
  • Saeed F, Nadeem M, Ahmed RS, Tahir Nadeem M, Arshad MS, Ullah A. Studying the impact of nutritional immunology underlying the modulation of immune responses by nutritional compounds—A review. Food and Agricultural Immunology. 2016;27:205–229. doi: 10.1080/09540105.2015.1079600.
  • Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256-1268. doi: 10.1016/S0140-6736(11)61452-9.
  • Taylor E, Johal A, Smith P, Wong P, Feng K, Pinillos F. Dr. Ethan Taylor: COVID-19and selenium—below the radar conversations. http://summit.sfu.ca/item/20378. (Erişim Tarihi: 09 Kasım 2020).
  • Majeed M, Nagabhushanam K, Gowda S, Mundkur L. An exploratory study of selenium status in healthy individuals and in patients with COVID-19in a south Indian population: The case for adequate selenium status. Nutrition. 2021;82:111053.
  • Liu Q, Zhao X, Ma J, Mu Y, Wang Y, Yang S, et al. Selenium (Se) plays a key role in the biological effects of some viruses: Implications for COVID-19. Environmental research. 2021;196:110984.
  • Lee YH, Lee SJ, Lee MK, Lee WY, Yong SJ, Kim SH. Serum selenium levels in patients with respiratory diseases: A prospective observational study. Journal of Thoracic Disease. 2016;8(8):2068–2078. doi: 10.21037/jtd.2016.07.60.
  • Manzanares W, Moreira E, Hardy G. Pharmaconutrition revisited for critically ill patients with coronavirus disease 2019 (COVID-19): Does selenium have a place?. Nutrition. 2021;81:110989.
  • Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Medical Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878.
  • Fakhrolmobasheri M, Nasr-Esfahany Z, Khanahmad H, Zeinalian M. Selenium supplementation can relieve the clinical complications of COVID-19and other similar viral infections. International Journal for Vitamin and Nutrition Research. 2020;1(1):1-3. doi: 10.1024/0300-9831/a000663.
  • De Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiological Reviews. 2015;95(1):1-46. doi: 10.1152/physrev.00012.2014.
  • Nielsen FH. Magnesium deficiency and increased inflammation: current perspectives. Journal of Inflammation Research. 2018;11:25-34. doi: 10.2147/JIR.S136742.
  • DiNicolantonio JJ, O’Keefe JH, Wilson W. Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018;5:e000668. doi: 10.1136/openhrt-2017-000668.
  • Tarleton EK. Factors influencing magnesium consumption among adults in the United States. Nutrition Reviews. 2018;76(7):526-538. doi: 10.1093/nutrit/nuy002.
  • Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnesium Research. 2020. doi: 10.1684/mrh.2020.0465.
  • Van Kempen TA, Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. American Journal of Physiology-Endocrinology and Metabolism. 2021;320(1):E2-E6.
  • DiNicolantonio JJ, O’Keefe JH. Magnesium and vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19patients. Missouri Medicine. 2021;118(1):68-73.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Review Article
Authors

Mücahit Muslu 0000-0002-8761-5061

Publication Date December 28, 2021
Submission Date November 9, 2020
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

APA Muslu, M. (2021). SARS COV-2 (COVİD-19) YÖNETİMİNDE ÇİNKO, BAKIR, SELENYUM VE MAGNEZYUMUN ETKİNLİĞİ VE ÖNEMİ. Sakarya Üniversitesi Holistik Sağlık Dergisi, 4(3), 167-182. https://doi.org/10.54803/sauhsd.823643