Research Article
BibTex RIS Cite

Yüksek Doz Hidrojen Peroksit ile Muamele Edilen İnsan Nöroblastoma Hücre Hattında Darbeli Elektromanyetik Alan Maruziyetinin Glutatyon Miktarına Etkisi

Year 2022, , 146 - 154, 27.05.2022
https://doi.org/10.29233/sdufeffd.1029835

Abstract

Darbeli Elektromanyetik Alan (PEMF) elektromanyetik alanların iyonlaştırıcı olmayan formlarından biri olup nörodejeneratif bozuklukların semptomlarının tedavisi gibi çeşitli tıbbi problemler için alternatif bir tedavi olarak kullanılmaktadır. Çalışmanın amacı, yüksek doz hidrojen peroksit (H2O2) ile muamele edilen insan nöroblastoma hücre hattında kısa süreli 75 Hz frekanslı PEMF maruziyetinin glutatyon (GSH) miktarına etkilerini araştırmaktır. Hücreler üç deneysel gruba ayrılmıştır: (I) sham-kontrol; (II) H2O2 ile muamele edilen hücreler; (III) H2O2 muamelesinin ardından PEMF'ye maruz bırakılan hücreler. Hücre canlılığı ve glutatyon miktarı sırasıyla spektrofotometrik ve Yüksek Performanslı Likit Kromatografi (HPLC) teknikleri kullanılarak ölçülmüştür. Yüksek doz H2O2 ile muamele edilen nöroblastoma hücre hattında muamele sonrası PEMF maruziyetinin oksidatif stresin zararlı etkilerine karşı sitoprotektif etkisinin, hücre canlılığında ve GSH miktarında artış ile ilişkili olduğu bulunmuştur.

Supporting Institution

AKDENİZ ÜNİVERSİTESİ

Project Number

FBA-2020-5388

Thanks

Bu çalışma Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (Proje Numarası: FBA-2020-5388).

References

  • [1] J. H. Kim, N. G, Quilantang, H. Y. Kim, S. Lee, and E. J. Cho, “Attenuation of hydrogen peroxide‑induced oxidative stress in SH‑SY5Y cells by three flavonoids from Acer okamotoanum,” Chemical Papers, 73 (5), 1135–1144, 2019.
  • [2] D. Poljak, and M. Cvetkovic, “On Exposure of Humans to Electromagnetic Fields–General Considerations,” Human Interaction with Electromagnetic Fields: Computational Models in Dosimetry. Elsevier, Slipt, 2019, pp. 1-20.
  • [3] D. A. Vallero, and T. M. Letcher, “Radiation,” EDD Unraveling Environmental Disasters. Elsevier, Slipt, 2013, pp. 299-320.
  • [4] F. Teimori, A. A. Khaki, A. Rajabzadeh, and L. Roshangar, “The effects of 30 mT electromagnetic fields on hippocampus cells of rats,” Surgical Neurology International, 7 (70), 2016.
  • [5] M. Hasanuzzaman, M. H. M. B. Bhuyan, F. Zulfiqar, A. Raza, S. M. Mohsin, J. Mahmud, M. Fujita, and V. Fotopoulos, “Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator,” Antioxidants, 9 (8), 681, 2020.
  • [6] H. Wang, and X. Zhang, “Magnetic Fields and Reactive Oxygen Species,” International Journal of Molecular Sciences, 18 (10), 2175-2195, 2017.
  • [7] Y. Chen, C. Qin, J. Huang, X. Tang, C. Liu, K. Huang J. Xu, G. Guo, A. Tong, and L. Zhou, “The role of astrocytes in oxidative stress of central nervous system: A mixed blessing,” Cell Prolif., 53 (3), 1-13, 2020.
  • [8] E. F. Kıvrak, K. K. Yurt, A. A. Kaplan, I. Alkan, and G. Altun, “Effects of electromagnetic fields exposure on the antioxidant defense system,” Journal of Microscopy and Ultrastructure, 5 (4), 167-176, 2017.
  • [9] I. S. Harris, and G. M DeNicola, “The Complex Interplay between Antioxidants and ROS in Cancer,” Trends in Cell Biology, 30 (6), 440-451, 2020.
  • [10] J. N. Cobley, M. L. Fiorello, and D. M. Baile, “13 reasons why the brain is susceptible to oxidative stress,” Redox Biology, 15, 490-503, 2018.
  • [11] M. Gümüşay, F. Gülbağça, S. Saygılı, I. Aydemir, A. Kaya, and M. İ. Tuğlu, “Darbeli Elektromanyetik Alan ve Darbeli Radyofrekans Uygulamalarının Sıçanlarda Yara İyileşme Etkilerinin Karşılaştırması,” 27-29 Ekim, Medical Technologies National Congress (TIPTEKNO 16), Antalya. 2016.
  • [12] M. Markov, J. Ryaby, and E. I. Waldorff, “Pulsed Electromagnetic Fields for Clinical Applications,” Taylor & Francis Group. NewYork, 2020, pp. 237.
  • [13] X. Qiu, X. Li, and Y. Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,”Medical Hypotheses, 136, 109506, 2020.
  • [14] B. Strauch, C. Herman, R. Dabb, L. J. Ignarro, and A. A. Pilla, “Evidence-Based Use of Pulsed Electromagnetic Field Therapy in Clinical Plastic Surgery,” Surgery Journal, 29 (2), 135 143, 2009.
  • [15] C. Daish, R. Blanchard, K. Fox, P. Pivonka, and E. Pirogova, “The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings,” Annals of Biomedical Engineering, 46 (4), 525-542, 2018.
  • [16] M. Markov, “XXIst century magnetotherapy,” Electromagn Biol Med, 34 (3), 190-196, 2015.
  • [17] S. Gessi, S. Merighi, S. Bencivenni, E. Battistello, F. Vincenzi, S. Setti, M. Cadossi, P. A. Borea, R. Cadossi, and K. Varani, “Pulsed electromagnetic field and relief of hypoxia‐induced neuronal cell death: The signaling pathway,” J Cell Physiol, 234, 15089-15097, 2019.
  • [18] M. O. Mattsson, and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, 12, 347-368, 2019.
  • [19] E. Capelli, F. Torrisi, L. Venturini, M. Granato, L. Fassina, G. F. D. Lupo, and G. Ricevuti, “Low-Frequency Pulsed Electromagnetic Field Is Able to Modulate miRNAs in an Experimental Cell Model of Alzheimer’s Disease,” Journal of Healthcare Engineering, (5-6), 1-10, 2017.
  • [20] R. M. Sherrard, N. Morellini, N. Jourdan, M. El-Esawi, L. D. Arthaut, C. Niessner, F. Rouyer, A. Klarsfeld, M. Doulazmi, and J. Witczak, “Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species,” PLoS Biol., 16 (10), 1-17, 2018.
  • [21] S. Ehnert, A. K. Fentz, A. Schreiner, J. Birk, B. Wilbrand, P. Ziegler, M. K. Reumann, H. Wang, K. Falldorf, and A. K. Nussler, “Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of O2-. and H2O2,” Scientific Reports, 7 (1), 14544, 2017.
  • [22] F. Vincenzi, A. Ravani, S. Pasquini, M. Merighi, S. Gessi, S. Setti, R. Cadossi, P. A. Borea, and K. Varani, “Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells,” Journal Cellular Physiogy, 232, 1200–1208, 2017.
  • [23] S. Falone, N. Marchesi, C. Osera, L. Fassina, S. Comincini, M. Amadio, and A. Pascale, “Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE (2) human neuroblastoma cells,” International Journal of Radiation Biology, 92 (5), 281-286, 2016.
  • [24] S. Karakurt, and O. Adali, “Tannic Acid Inhibits Proliferation, Migration, Invasion of Prostate Cancer and Modulates Drug Metabolizing and Antioxidant Enzymes,” Anti-Cancer Agents in Medicinal Chemistry, 16 (6), 781-789, 2016.
  • [25] H. Gözen, C. Demirel, M. Akan, and M. Tarakçıoğlu, “Effects of pulsed electromagnetic fields on lipid peroxidation and antioxidant levels in blood and liver of diabetic rats,” European Journal of Therapeutics, 23,152-158, 2017.
  • [26] M. Tasbih-Forosh, L. Zarei, E. Saboory, and M. Bahrami-Bukani, “Effects of Pulsed Electromagnetic Field with Predatory Stress on Functional and Histological Index of Injured-Sciatic Nerve in Rat,” Bull Emerg Trauma, 5 (2), 96-103, 2017.
  • [27] C. Osera, M. Amadio, S. Falone, L. Fassina, G. Magenes, F. Amicarelli, G. S. Govoni, and A. Pascale, “Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity,” Bioelectromagnetics, 36 (3), 219-232, 2015.
  • [28] M. Gülden, M. A. Jess, J. Kammann, E. Maser, and H. Seibert, “Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time,” Free Radic Biol Med., 49 (8), 1298-305, 2010.
  • [29] A. Daverey, and S. K. Agrawal, “Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress,” Brain Res,1692,45-55, 2018.
  • [30] S. Konyalioglu, G. Armagan, A. Yalcin, Ç. Atalayin, and T. Dagci, “Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells,” Neural Regen Res, 8 (6), 485-495, 2013.

Effect of Pulsed Electromagnetic Field Exposure on Glutathione Amount in Human Neuroblastoma Cell Line Treated with High-Dose Hydrogen Peroxide

Year 2022, , 146 - 154, 27.05.2022
https://doi.org/10.29233/sdufeffd.1029835

Abstract

The Pulsed Electromagnetic Field (PEMF) is one of the non-ionizing forms of electromagnetic fields that has been used as an alternative therapy for various medical problems, including treating symptoms of neurodegenerative disorders. The present work’s goal is to explore the possible effects of short-term exposure to 75 Hz frequency of PEMF on the amount of glutathione (GSH) in high-dose hydrogen peroxide (H2O2) treated human neuroblastoma cell line. Cells were divided into three experimental groups: (I) sham-control; (II) cells treated by H2O2; (III) cells post-exposed to PEMF following H2O2 challenge. The cell viability and the amount of glutathione were measured by spectrophotometrically and High Performance Liquid Chromatography (HPLC) techniques, respectivelly. It has been found that the cytoprotective effect of post-PEMF exposure against deleterious effects of oxidative stress triggered by high-dose H2O2 challenge in neuroblastoma cell line is mediated by the increase in the cell viability and the elevation in the GSH amount.

Project Number

FBA-2020-5388

References

  • [1] J. H. Kim, N. G, Quilantang, H. Y. Kim, S. Lee, and E. J. Cho, “Attenuation of hydrogen peroxide‑induced oxidative stress in SH‑SY5Y cells by three flavonoids from Acer okamotoanum,” Chemical Papers, 73 (5), 1135–1144, 2019.
  • [2] D. Poljak, and M. Cvetkovic, “On Exposure of Humans to Electromagnetic Fields–General Considerations,” Human Interaction with Electromagnetic Fields: Computational Models in Dosimetry. Elsevier, Slipt, 2019, pp. 1-20.
  • [3] D. A. Vallero, and T. M. Letcher, “Radiation,” EDD Unraveling Environmental Disasters. Elsevier, Slipt, 2013, pp. 299-320.
  • [4] F. Teimori, A. A. Khaki, A. Rajabzadeh, and L. Roshangar, “The effects of 30 mT electromagnetic fields on hippocampus cells of rats,” Surgical Neurology International, 7 (70), 2016.
  • [5] M. Hasanuzzaman, M. H. M. B. Bhuyan, F. Zulfiqar, A. Raza, S. M. Mohsin, J. Mahmud, M. Fujita, and V. Fotopoulos, “Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator,” Antioxidants, 9 (8), 681, 2020.
  • [6] H. Wang, and X. Zhang, “Magnetic Fields and Reactive Oxygen Species,” International Journal of Molecular Sciences, 18 (10), 2175-2195, 2017.
  • [7] Y. Chen, C. Qin, J. Huang, X. Tang, C. Liu, K. Huang J. Xu, G. Guo, A. Tong, and L. Zhou, “The role of astrocytes in oxidative stress of central nervous system: A mixed blessing,” Cell Prolif., 53 (3), 1-13, 2020.
  • [8] E. F. Kıvrak, K. K. Yurt, A. A. Kaplan, I. Alkan, and G. Altun, “Effects of electromagnetic fields exposure on the antioxidant defense system,” Journal of Microscopy and Ultrastructure, 5 (4), 167-176, 2017.
  • [9] I. S. Harris, and G. M DeNicola, “The Complex Interplay between Antioxidants and ROS in Cancer,” Trends in Cell Biology, 30 (6), 440-451, 2020.
  • [10] J. N. Cobley, M. L. Fiorello, and D. M. Baile, “13 reasons why the brain is susceptible to oxidative stress,” Redox Biology, 15, 490-503, 2018.
  • [11] M. Gümüşay, F. Gülbağça, S. Saygılı, I. Aydemir, A. Kaya, and M. İ. Tuğlu, “Darbeli Elektromanyetik Alan ve Darbeli Radyofrekans Uygulamalarının Sıçanlarda Yara İyileşme Etkilerinin Karşılaştırması,” 27-29 Ekim, Medical Technologies National Congress (TIPTEKNO 16), Antalya. 2016.
  • [12] M. Markov, J. Ryaby, and E. I. Waldorff, “Pulsed Electromagnetic Fields for Clinical Applications,” Taylor & Francis Group. NewYork, 2020, pp. 237.
  • [13] X. Qiu, X. Li, and Y. Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,”Medical Hypotheses, 136, 109506, 2020.
  • [14] B. Strauch, C. Herman, R. Dabb, L. J. Ignarro, and A. A. Pilla, “Evidence-Based Use of Pulsed Electromagnetic Field Therapy in Clinical Plastic Surgery,” Surgery Journal, 29 (2), 135 143, 2009.
  • [15] C. Daish, R. Blanchard, K. Fox, P. Pivonka, and E. Pirogova, “The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings,” Annals of Biomedical Engineering, 46 (4), 525-542, 2018.
  • [16] M. Markov, “XXIst century magnetotherapy,” Electromagn Biol Med, 34 (3), 190-196, 2015.
  • [17] S. Gessi, S. Merighi, S. Bencivenni, E. Battistello, F. Vincenzi, S. Setti, M. Cadossi, P. A. Borea, R. Cadossi, and K. Varani, “Pulsed electromagnetic field and relief of hypoxia‐induced neuronal cell death: The signaling pathway,” J Cell Physiol, 234, 15089-15097, 2019.
  • [18] M. O. Mattsson, and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, 12, 347-368, 2019.
  • [19] E. Capelli, F. Torrisi, L. Venturini, M. Granato, L. Fassina, G. F. D. Lupo, and G. Ricevuti, “Low-Frequency Pulsed Electromagnetic Field Is Able to Modulate miRNAs in an Experimental Cell Model of Alzheimer’s Disease,” Journal of Healthcare Engineering, (5-6), 1-10, 2017.
  • [20] R. M. Sherrard, N. Morellini, N. Jourdan, M. El-Esawi, L. D. Arthaut, C. Niessner, F. Rouyer, A. Klarsfeld, M. Doulazmi, and J. Witczak, “Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species,” PLoS Biol., 16 (10), 1-17, 2018.
  • [21] S. Ehnert, A. K. Fentz, A. Schreiner, J. Birk, B. Wilbrand, P. Ziegler, M. K. Reumann, H. Wang, K. Falldorf, and A. K. Nussler, “Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of O2-. and H2O2,” Scientific Reports, 7 (1), 14544, 2017.
  • [22] F. Vincenzi, A. Ravani, S. Pasquini, M. Merighi, S. Gessi, S. Setti, R. Cadossi, P. A. Borea, and K. Varani, “Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells,” Journal Cellular Physiogy, 232, 1200–1208, 2017.
  • [23] S. Falone, N. Marchesi, C. Osera, L. Fassina, S. Comincini, M. Amadio, and A. Pascale, “Pulsed electromagnetic field (PEMF) prevents pro-oxidant effects of H2O2 in SK-N-BE (2) human neuroblastoma cells,” International Journal of Radiation Biology, 92 (5), 281-286, 2016.
  • [24] S. Karakurt, and O. Adali, “Tannic Acid Inhibits Proliferation, Migration, Invasion of Prostate Cancer and Modulates Drug Metabolizing and Antioxidant Enzymes,” Anti-Cancer Agents in Medicinal Chemistry, 16 (6), 781-789, 2016.
  • [25] H. Gözen, C. Demirel, M. Akan, and M. Tarakçıoğlu, “Effects of pulsed electromagnetic fields on lipid peroxidation and antioxidant levels in blood and liver of diabetic rats,” European Journal of Therapeutics, 23,152-158, 2017.
  • [26] M. Tasbih-Forosh, L. Zarei, E. Saboory, and M. Bahrami-Bukani, “Effects of Pulsed Electromagnetic Field with Predatory Stress on Functional and Histological Index of Injured-Sciatic Nerve in Rat,” Bull Emerg Trauma, 5 (2), 96-103, 2017.
  • [27] C. Osera, M. Amadio, S. Falone, L. Fassina, G. Magenes, F. Amicarelli, G. S. Govoni, and A. Pascale, “Pre-exposure of neuroblastoma cell line to pulsed electromagnetic field prevents H2O2-induced ROS production by increasing MnSOD activity,” Bioelectromagnetics, 36 (3), 219-232, 2015.
  • [28] M. Gülden, M. A. Jess, J. Kammann, E. Maser, and H. Seibert, “Cytotoxic potency of H2O2 in cell cultures: impact of cell concentration and exposure time,” Free Radic Biol Med., 49 (8), 1298-305, 2010.
  • [29] A. Daverey, and S. K. Agrawal, “Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress,” Brain Res,1692,45-55, 2018.
  • [30] S. Konyalioglu, G. Armagan, A. Yalcin, Ç. Atalayin, and T. Dagci, “Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells,” Neural Regen Res, 8 (6), 485-495, 2013.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology, Chemical Engineering
Journal Section Makaleler
Authors

Tuğçe Şimşek This is me 0000-0001-5379-2767

Serdar Karakurt 0000-0002-4449-6103

Çiğdem Gökçek-saraç 0000-0002-3538-6551

Project Number FBA-2020-5388
Publication Date May 27, 2022
Published in Issue Year 2022

Cite

IEEE T. Şimşek, S. Karakurt, and Ç. Gökçek-saraç, “Yüksek Doz Hidrojen Peroksit ile Muamele Edilen İnsan Nöroblastoma Hücre Hattında Darbeli Elektromanyetik Alan Maruziyetinin Glutatyon Miktarına Etkisi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 1, pp. 146–154, 2022, doi: 10.29233/sdufeffd.1029835.