Research Article
BibTex RIS Cite

CuGa5S8’in Elektronik Davranışı ve Mekaniksel Karakteri

Year 2022, , 72 - 81, 27.05.2022
https://doi.org/10.29233/sdufeffd.1037922

Abstract

Bu teoriksel çalışmada, F4 ̅3m uzay grubu ve 216 uzay numarası ile yüzey merkezli kübik yapıya sahip olan CuGa5S8 bileşiğinin elektronik davranışı ve mekaniksel özellikleri sunulmaktadır. Yoğunluk fonksiyonel teorisine dayanan (YFT) tüm hesaplamalar, Genelleştirilmiş Gradient Yaklaşımı (GGY) ile gerçekleştirilmiştir. Bu sistemin gözlemlenen elektronik bant yapısından yaklaşık sıfır-bant aralıklı yarıiletken bir davranışa sahip olduğu anlaşılmıştır. Ayrıca, yukarı-spin ve aşağı-spin durumlarındaki yüksek benzerlik bu bileşiğin manyetik doğasının paramanyetik olabileceğine bir işarettir. Bunun yanısıra, zor-zorlanma yöntemi ile elastik sabitler hesaplanmış ve sonra bu elastik sabitler, söz konusu sistemin bazı önemli mekaniksel özelliklerini tahmin etmek için kullanılmıştır.

References

  • [1] R. W. Birkmire and E. Eser “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci., 27, 625-653, 1997.
  • [2] M. I. Alonso, M. Garriga, C. A. Durante Rincon, and M. Leon, “Optical properties of chalcopyrite CuAlxIn1-xSe2 alloys,” J. Appl. Phys., 88, 5796-5801, 2000.
  • [3] D. Li, F. Ling, Z. Zhu, H. Zhang, and X. Zhang “First-principles studies on the electronic and optical properties of CuAlSe2 and CuAl5Se8,” J. Phys. Chem. Solids, 73, 617-621, 2012.
  • [4] A. M. Fernandez and R. M. Bhattacharya, “Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology,” Thin Solid Films, 474, 10-13, 2005.
  • [5] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt., 19, 894-897, 2011.
  • [6] D. Y. Lee, M. S. Kim, L. Larina, and B. T. Ahn, “Effect of Cu content on the photovoltaic properties of Cu(In,Ga)Se2Solar cells prepared by the evaporation of binary selenide sources,” Electron. Mater. Lett., 4, 13-18, 2008.
  • [7] M. E. Beck, T. Weiss, D. Fischer, S. Fiechter, A. Jager-Waldau, and M. Ch. Lux-Steiner, “Structural analysis of Cu1−xAgxGaSe2 bulk materials and thin films,” Thin Solid Films, 361-362, 130-134, 2000.
  • [8] R. Noufi, R. Axton, C. Herrington, and S. K. Deb, “Electronic properties versus composition of thin films of CuInSe2,” Appl. Phys. Lett., 45, 668, 1984.
  • [9] A. J. Nelson, A. B. Swartzlander, J. R. Tuttle, R. Noufi, R. Patel, and H. Hochst, “Photoemission investigation of the electronic structure at polycrystalline CuInSe2 thin-film interfaces,” J. Appl. Phys., 74, 5757, 1993.
  • [10] F. Smaili, M. Kanzari, and B. Rezig, “Characterization of CuIn1 − xAlxS2 thin films prepared by thermal evaporation,” Mater. Sci. Eng.:C, 28, 954-958, 2008.
  • [11] J. Olejnicek, C. A. Kamler, S. A. Darveau, C. L. Exstrom, L. E. Slaymaker, A. R. Vandeventer, N. J. Ianno, and R. J. Soukup, “Formation of CuIn1−xAlxSe2 thin films studied by Raman scattering,” Thin Solid Films, 519, 5329-5334, 2011.
  • [12] D. Takanoglu, K. Yilmaz, Y. Ozcan, and O. Karabulut, “Structural, electrical and optical properties of thermally evaporated CdSe And In-Doped CdSe thin films,” Chalcogenide Lett., 12, 35-42, 2015.
  • [13] Y. Ozcan, S. Ide, M. Karaku, H. Yilmaz, “Crystal and Molecular Structures of trans-Nickel (II)-bis [(O-propyln)-(p-methoxyphenyl) dithiophosphonate],” Anal Sci., 18, 1285-1286, 2002.
  • [14] W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
  • [15] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
  • [16] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
  • [17] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
  • [18] G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett, 77, 3865-3868, 1996.
  • [20] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
  • [21] C. Kaderoglu, G. Surucu, and A. Erkisi, “The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3,” J. Electronic Materials, 46, 5827-5836, 2017.
  • [22] A. L. Parrill, K. B. Lipkowitz, Reviews in Computational Chemistry, Wiley, 29, 2016, pp. 44-47.
  • [23] Y. L. Page and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations,” Phys. Rev. B, 63, 174103, 2001.
  • [24] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, 90, 224104, 2014.
  • [25] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics.” Mater. Sci. Technol., 8, 345-349, 1992.
  • [26] W. Voigt, Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig und Berlin, 1928.
  • [27] A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle,” J. Appl. Math. Mech., 9, 49-58, 1929.
  • [28] R. Hill, “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc., A 65, 349-354, 1952.
  • [29] D. H. Wu, H. C. Wang, L. T. Wei, R. K. Pan, and B. Y. Tang, “First-principles study of structural stability and elastic properties of MgPd3 and its hydride,” J. Magnes. Alloy., 2, 165–174, 2014.
  • [30] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Lond. Edinb. Dubl. Phil. Mag., 45, 823–843, 1954.
  • [31] G. Surucu, “Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-inito study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds,” Mater. Chem. Phys., 203, 106–117, 2018.
  • [32] V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, “Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3,” Phys. Status. Solidi – Rapid. Res. Lett., 1, 89–91, 2007.
  • [33] K. Lau and A. K. McCurdy, “Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals,” Phys. Rev. B, 58, 8980–8984, 1998.
  • [34] E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements. McGraw-Hill, New York, 1973.

The Electronic Behavior and Mechanical Characteristics of CuGa5S8

Year 2022, , 72 - 81, 27.05.2022
https://doi.org/10.29233/sdufeffd.1037922

Abstract

In this theoretical study, it is presented that the electronic behavior and mechanical characteristics of CuGa5S8 compound having face centered cubic structure with space group F4 ̅3m and space number 216. All calculations based on density functional theory (DFT) were performed by Generalized Gradient Approximation (GGA). It is understood from the observed electronic band structure of this system that it has semiconducting behavior close to zero-band gap. Also, the high similarity between spin-up and spin-down states indicates that the magnetic nature of this compound may be paramagnetic. Furthermore, the elastic constants were calculated by the stress-strain method, and then, the mechanical stability of this system was determined. Finally, these constants were used to predict some important mechanical properties of the mentioned system.

References

  • [1] R. W. Birkmire and E. Eser “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci., 27, 625-653, 1997.
  • [2] M. I. Alonso, M. Garriga, C. A. Durante Rincon, and M. Leon, “Optical properties of chalcopyrite CuAlxIn1-xSe2 alloys,” J. Appl. Phys., 88, 5796-5801, 2000.
  • [3] D. Li, F. Ling, Z. Zhu, H. Zhang, and X. Zhang “First-principles studies on the electronic and optical properties of CuAlSe2 and CuAl5Se8,” J. Phys. Chem. Solids, 73, 617-621, 2012.
  • [4] A. M. Fernandez and R. M. Bhattacharya, “Electrodeposition of CuIn1-xGaxSe2 precursor films: optimization of film composition and morphology,” Thin Solid Films, 474, 10-13, 2005.
  • [5] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt., 19, 894-897, 2011.
  • [6] D. Y. Lee, M. S. Kim, L. Larina, and B. T. Ahn, “Effect of Cu content on the photovoltaic properties of Cu(In,Ga)Se2Solar cells prepared by the evaporation of binary selenide sources,” Electron. Mater. Lett., 4, 13-18, 2008.
  • [7] M. E. Beck, T. Weiss, D. Fischer, S. Fiechter, A. Jager-Waldau, and M. Ch. Lux-Steiner, “Structural analysis of Cu1−xAgxGaSe2 bulk materials and thin films,” Thin Solid Films, 361-362, 130-134, 2000.
  • [8] R. Noufi, R. Axton, C. Herrington, and S. K. Deb, “Electronic properties versus composition of thin films of CuInSe2,” Appl. Phys. Lett., 45, 668, 1984.
  • [9] A. J. Nelson, A. B. Swartzlander, J. R. Tuttle, R. Noufi, R. Patel, and H. Hochst, “Photoemission investigation of the electronic structure at polycrystalline CuInSe2 thin-film interfaces,” J. Appl. Phys., 74, 5757, 1993.
  • [10] F. Smaili, M. Kanzari, and B. Rezig, “Characterization of CuIn1 − xAlxS2 thin films prepared by thermal evaporation,” Mater. Sci. Eng.:C, 28, 954-958, 2008.
  • [11] J. Olejnicek, C. A. Kamler, S. A. Darveau, C. L. Exstrom, L. E. Slaymaker, A. R. Vandeventer, N. J. Ianno, and R. J. Soukup, “Formation of CuIn1−xAlxSe2 thin films studied by Raman scattering,” Thin Solid Films, 519, 5329-5334, 2011.
  • [12] D. Takanoglu, K. Yilmaz, Y. Ozcan, and O. Karabulut, “Structural, electrical and optical properties of thermally evaporated CdSe And In-Doped CdSe thin films,” Chalcogenide Lett., 12, 35-42, 2015.
  • [13] Y. Ozcan, S. Ide, M. Karaku, H. Yilmaz, “Crystal and Molecular Structures of trans-Nickel (II)-bis [(O-propyln)-(p-methoxyphenyl) dithiophosphonate],” Anal Sci., 18, 1285-1286, 2002.
  • [14] W. Kohn and L.J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, A1133-A1138, 1965.
  • [15] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., 136, B864-B871, 1964.
  • [16] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, 50, 17953-17979, 1994.
  • [17] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, 47, 558–561, 1993.
  • [18] G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., 6, 15–50, 1996.
  • [19] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett, 77, 3865-3868, 1996.
  • [20] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192, 1976.
  • [21] C. Kaderoglu, G. Surucu, and A. Erkisi, “The investigation of electronic, elastic and vibrational properties of an interlanthanide perovskite: PrYbO3,” J. Electronic Materials, 46, 5827-5836, 2017.
  • [22] A. L. Parrill, K. B. Lipkowitz, Reviews in Computational Chemistry, Wiley, 29, 2016, pp. 44-47.
  • [23] Y. L. Page and P. Saxe, “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations,” Phys. Rev. B, 63, 174103, 2001.
  • [24] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, 90, 224104, 2014.
  • [25] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics.” Mater. Sci. Technol., 8, 345-349, 1992.
  • [26] W. Voigt, Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig und Berlin, 1928.
  • [27] A. Reuss, “Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle,” J. Appl. Math. Mech., 9, 49-58, 1929.
  • [28] R. Hill, “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc., A 65, 349-354, 1952.
  • [29] D. H. Wu, H. C. Wang, L. T. Wei, R. K. Pan, and B. Y. Tang, “First-principles study of structural stability and elastic properties of MgPd3 and its hydride,” J. Magnes. Alloy., 2, 165–174, 2014.
  • [30] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Lond. Edinb. Dubl. Phil. Mag., 45, 823–843, 1954.
  • [31] G. Surucu, “Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-inito study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds,” Mater. Chem. Phys., 203, 106–117, 2018.
  • [32] V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, “Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3,” Phys. Status. Solidi – Rapid. Res. Lett., 1, 89–91, 2007.
  • [33] K. Lau and A. K. McCurdy, “Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals,” Phys. Rev. B, 58, 8980–8984, 1998.
  • [34] E. Schreiber, O. L. Anderson, and N. Soga, Elastic Constants and their Measurements. McGraw-Hill, New York, 1973.
There are 34 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Aytaç Erkişi 0000-0001-7995-7590

Yusuf Özcan 0000-0003-4355-5383

Publication Date May 27, 2022
Published in Issue Year 2022

Cite

IEEE A. Erkişi and Y. Özcan, “The Electronic Behavior and Mechanical Characteristics of CuGa5S8”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 1, pp. 72–81, 2022, doi: 10.29233/sdufeffd.1037922.