Research Article
BibTex RIS Cite

Ti-temelli Yüksek Sıcaklık Şekil Hafızalı Alaşımının Martensitik Dönüşüm, Mikroyapı Karakterizasyonu ve Kinetik Çalışması

Year 2022, , 341 - 348, 25.11.2022
https://doi.org/10.29233/sdufeffd.1076262

Abstract

Yüksek sıcaklık şekil hafızalı alaşımlar (YSŞHA) endüstri, biyomedikal, havacılık vb. gibi birçok alanda yaygın olarak kullanılmaktadır. Bu alaşımların kullanım alanlarını genişletmek için malzemelerin iyileştirilmesi, özellikle martensitik dönüşüm sıcaklıklarının kontrol edilmesi gerekmektedir. Martensitik dönüşüm sıcaklığını kontrol etmek için malzemeye genellikle üçüncü elementler eklenir. Havacılık sektöründe uçak motorlarında kullanılmak üzere hazırlanan Ti-12V-8Al (ağ. %) alaşımı düşük yoğunluğu nedeniyle iyi bir seçimdir. Bu çalışmada, Ti-12V-8Al (ağ. %) alaşımı ark-eritme tekniği kullanılarak hazırlanmıştır. Ti-12V-8Al (ağ. %) alaşımının martensit-ostenit dönüşüm sıcaklıkları, faz oluşumları, mikro yapısı sırasıyla diferansiyel taramalı kalorimetri (DSC), X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve optik mikroskop (OM) ile incelenmiştir. DSC testinde alaşımın ısıtma hızına bağlı olarak martensitik dönüşüm sıcaklığının azaldığı tespit edilmiştir. XRD ve SEM ölçümlerinde alaşımın α″ martensitik fazlarının yanı sıra bazı β ostenit fazlarına da sahip olduğu gözlenmiştir. Alaşımın termal aktivasyon enerjileri Kissinger ve Ozawa yöntemleri ile bulunmuştur. Bu iki yöntemle hesaplanan aktivasyon enerjisi değerlerinin birbirine yakın olduğu sonucuna varılmıştır.

Supporting Institution

Gaziosmanpaşa Universitesi

Project Number

2017/95

Thanks

Projede katkılarından dolayı Gaziosmanpaşa Üniversitesi Bap Koordinatörlüğüne tesekkurlerimi sunarım.

References

  • D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA, 2017.
  • S. Ergen, “Mechanical and Microstructural Properties of Ti-V-Al High Temperature Shape Memory Alloy,” Europea Journal of Science and Technology, Special Issue 26, 270-275, 2021.
  • W. Cai, C. S. Zhang, and L. C. Zhao, “Recovery stress of Ni-Ti-Nb wide-hysteresis shape memory alloy under constant strain and thermomechanical cycling,” J. Mater. Sci. Lett., 13, 8-9, 1994.
  • X. J. Yan, J. V. Humbeeck, “Influence of annealing on recovery stress of coldworked Ni-Ti wire,” Funct. Mater. Lett., 2, 55-6, 2009.
  • Ö. Bağ, F. Yılmaz, U. Kölemen, S. Ergen, C. Temiz, O. Uzun, “Transformational, microstructural and superelasticity characteristics of Ti–V–Al high temperature shape memory alloys with Zr addition,” Phys. Scripta, 96: 085702, 2021.
  • Z. Y. Yang, X. H. Zheng, Y. Wu, W. Cai, “Martensitic transformation and shape memory behavior of Ti-V-Al-Fe lightweight shape memory alloys,” J. Alloy. Compd., 680, 462-466, 2016.
  • K. Otsuka and X. Ren,“ Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, 511–678, 2005.
  • B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, and J. Sharp, “Thermo-mechanical cyclic response of an ultra fine grained NiTi shape memory alloy,” Acta Mater, 56, 3630–3646, 2008.
  • K. Otsuka and C. M. Wayman, “Shape memory materials,” Cambridge University Press, Cambridge, 1999.
  • A. F. Yetima, F. Yildiz, Y. Vangolua, A. Alsarana, and A. Celika, “Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy,” Wear, 267, 2179–2185, 2009.
  • Z. Y. Yang, X. H. Zheng, and W. Cai, “Effects of thermomechanical treatment on microstructure and shape memory effect of Ti–13V–3Al lightweight shape memory alloy,” Mat. Sci. Eng. A-Struct., 655, 122–131, 2016.
  • H. Tada, T. Yamamoto, X. M. Wang, H. Kato, “Effect of Al addition on superelastic properties of aged Ti–Nb–Zr–Al quaternary alloys,” Mater. Trans., 11, 1981–1985, 2012.
  • Z. Y. Yang, X. H. Zheng, and W. Cai, “ Martensitic transformation and shape memory effect of Ti–V–Al lightweight high temperature shape memory alloys,” Scripta Mater., 99, 97–100, 2015.
  • M. Kok, Z. D. Yakinci, A. Aydogdu, and Y. Aydogdu, “Thermal and magnetic properties of Ni51Mn28.5Ga19.5B magnetic-shape-memory alloy,” J. Therm. Anal. Calorim., 115, 555–559, 2014.
  • S. Ergen, “Determination of phase transformation and activation energy in high temperature shape memory Ti-V-Al Alloy,” Hittite Journal of Science and Engineering, 5 (1) 63-68, 2018.
  • H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem., 29 (11), 1702–1706, National Bureau of Standards, Washington, 1957.
  • Ö. Bağ, S. Ergen, F. Yılmaz, and U. Kölemen, “Influence of Al content on transformation temperature and activation energy of Ti–V–Al high temperature shape memory alloys,” Solid State Commun., 323, 114104, 2021.
  • L.W. Ma, H.S. Cheng, C.Y. Chung, and B. Yuan, “Effect of heat treatment time on microstructure and mechanical properties of Ti–19Nb–9Zr (at %) shape memory alloy,” Mater. Sci. Eng., A 561, 427–433, 2013.
  • G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, and K. Otsuka, “Precipitation kinetics of Ti3Ni4 in polycrystalline Ni-Rich Ti-Ni alloys and its relation to abnormal multi-stage transformation behavior,” Mater. Sci. Eng. A, 438– 440, 622–626, 2006.
  • G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, and K. Otsuka, “Origin of abnormal multistage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys,” Acta Mater., 52, 4351–4362, 2004.
  • Y. Cui, Y. Li, K. Luo, and H. Xu, “Microstructure and shape memory effect of Ti–20Zr–10Nb alloy,” Mat. Sci. Eng. A, 527, 652-656, 2010.
  • T. Ozawa, “A new method of analyzing thermogravimetric data,” Bull. Chem. Soc. Japan, 38 (11), 1881–1886, 1965.
  • H. Fang, B. Wong, and Y. Bai, “Kinetic modeling of thermophysical properties of shape memory alloys during phase transformation,” Constr. Build. Mater., 131, 146-155, 2017.
  • F. Dagdelen and Y. Aydogdu, “Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs,” J. Therm. Anal. Calorim., 136, 637–642, 2019.
  • F. Dagdelen, E. Balcı, I. N. Qader, Y. Aydogdu, and S. Saydam, “Effects of substituting Nb with Ta on microstructure and thermal properties of novel biocompatible TiNiNbTa shape memory alloys,” Phys. Met. Metallogr., 122, 1572–1580, 2021.

Characterization of Martensitic Transformation, Microstructure and a Kinetic Study of Ti-based High Temperature Shape Memory Alloy

Year 2022, , 341 - 348, 25.11.2022
https://doi.org/10.29233/sdufeffd.1076262

Abstract

High temperature shape memory alloys (HTSMAs) are widely used in many fiels such as industry, biomedical, aerospace, etc. In order to expand the usage areas of these alloys, it is necessary to improve the materials, especially the martensitic transformation temperatures should be controlled. Third elements are often added to the material to control the martensitic transformation temperature. Ti-12V-8Al (wt. %) alloy, which is prepared for use in aircraft engines in the aviation industry, is a good choice due to its low density. In this study, Ti-12V-8Al (wt. %) alloy was prepared with the help of arc-melting technique. The martensite-austenite transformation temperatures, phase formations, microstructure of Ti-12V-8Al (wt. %) alloy were examined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscope (SEM) and optical microscope (OM) respectively. In the DSC test, it was determined that the martensitic transformation temperature reduced according as the heating rate of the alloy. In XRD and SEM measurements, it was observed that the alloy has α″ martensitic phases as well as some β austenite phases. Thermal activation energies of the alloy were founded by Kissinger and Ozawa techniques. It was concluded that the activation energy amounts computed by these two techniques are parallel to each other.

Project Number

2017/95

References

  • D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA, 2017.
  • S. Ergen, “Mechanical and Microstructural Properties of Ti-V-Al High Temperature Shape Memory Alloy,” Europea Journal of Science and Technology, Special Issue 26, 270-275, 2021.
  • W. Cai, C. S. Zhang, and L. C. Zhao, “Recovery stress of Ni-Ti-Nb wide-hysteresis shape memory alloy under constant strain and thermomechanical cycling,” J. Mater. Sci. Lett., 13, 8-9, 1994.
  • X. J. Yan, J. V. Humbeeck, “Influence of annealing on recovery stress of coldworked Ni-Ti wire,” Funct. Mater. Lett., 2, 55-6, 2009.
  • Ö. Bağ, F. Yılmaz, U. Kölemen, S. Ergen, C. Temiz, O. Uzun, “Transformational, microstructural and superelasticity characteristics of Ti–V–Al high temperature shape memory alloys with Zr addition,” Phys. Scripta, 96: 085702, 2021.
  • Z. Y. Yang, X. H. Zheng, Y. Wu, W. Cai, “Martensitic transformation and shape memory behavior of Ti-V-Al-Fe lightweight shape memory alloys,” J. Alloy. Compd., 680, 462-466, 2016.
  • K. Otsuka and X. Ren,“ Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci., 50, 511–678, 2005.
  • B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, and J. Sharp, “Thermo-mechanical cyclic response of an ultra fine grained NiTi shape memory alloy,” Acta Mater, 56, 3630–3646, 2008.
  • K. Otsuka and C. M. Wayman, “Shape memory materials,” Cambridge University Press, Cambridge, 1999.
  • A. F. Yetima, F. Yildiz, Y. Vangolua, A. Alsarana, and A. Celika, “Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy,” Wear, 267, 2179–2185, 2009.
  • Z. Y. Yang, X. H. Zheng, and W. Cai, “Effects of thermomechanical treatment on microstructure and shape memory effect of Ti–13V–3Al lightweight shape memory alloy,” Mat. Sci. Eng. A-Struct., 655, 122–131, 2016.
  • H. Tada, T. Yamamoto, X. M. Wang, H. Kato, “Effect of Al addition on superelastic properties of aged Ti–Nb–Zr–Al quaternary alloys,” Mater. Trans., 11, 1981–1985, 2012.
  • Z. Y. Yang, X. H. Zheng, and W. Cai, “ Martensitic transformation and shape memory effect of Ti–V–Al lightweight high temperature shape memory alloys,” Scripta Mater., 99, 97–100, 2015.
  • M. Kok, Z. D. Yakinci, A. Aydogdu, and Y. Aydogdu, “Thermal and magnetic properties of Ni51Mn28.5Ga19.5B magnetic-shape-memory alloy,” J. Therm. Anal. Calorim., 115, 555–559, 2014.
  • S. Ergen, “Determination of phase transformation and activation energy in high temperature shape memory Ti-V-Al Alloy,” Hittite Journal of Science and Engineering, 5 (1) 63-68, 2018.
  • H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem., 29 (11), 1702–1706, National Bureau of Standards, Washington, 1957.
  • Ö. Bağ, S. Ergen, F. Yılmaz, and U. Kölemen, “Influence of Al content on transformation temperature and activation energy of Ti–V–Al high temperature shape memory alloys,” Solid State Commun., 323, 114104, 2021.
  • L.W. Ma, H.S. Cheng, C.Y. Chung, and B. Yuan, “Effect of heat treatment time on microstructure and mechanical properties of Ti–19Nb–9Zr (at %) shape memory alloy,” Mater. Sci. Eng., A 561, 427–433, 2013.
  • G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, and K. Otsuka, “Precipitation kinetics of Ti3Ni4 in polycrystalline Ni-Rich Ti-Ni alloys and its relation to abnormal multi-stage transformation behavior,” Mater. Sci. Eng. A, 438– 440, 622–626, 2006.
  • G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, and K. Otsuka, “Origin of abnormal multistage martensitic transformation behavior in aged Ni-rich Ti-Ni shape memory alloys,” Acta Mater., 52, 4351–4362, 2004.
  • Y. Cui, Y. Li, K. Luo, and H. Xu, “Microstructure and shape memory effect of Ti–20Zr–10Nb alloy,” Mat. Sci. Eng. A, 527, 652-656, 2010.
  • T. Ozawa, “A new method of analyzing thermogravimetric data,” Bull. Chem. Soc. Japan, 38 (11), 1881–1886, 1965.
  • H. Fang, B. Wong, and Y. Bai, “Kinetic modeling of thermophysical properties of shape memory alloys during phase transformation,” Constr. Build. Mater., 131, 146-155, 2017.
  • F. Dagdelen and Y. Aydogdu, “Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs,” J. Therm. Anal. Calorim., 136, 637–642, 2019.
  • F. Dagdelen, E. Balcı, I. N. Qader, Y. Aydogdu, and S. Saydam, “Effects of substituting Nb with Ta on microstructure and thermal properties of novel biocompatible TiNiNbTa shape memory alloys,” Phys. Met. Metallogr., 122, 1572–1580, 2021.
There are 25 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Öznur Bağ 0000-0002-9944-8221

Project Number 2017/95
Publication Date November 25, 2022
Published in Issue Year 2022

Cite

IEEE Ö. Bağ, “Characterization of Martensitic Transformation, Microstructure and a Kinetic Study of Ti-based High Temperature Shape Memory Alloy”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 341–348, 2022, doi: 10.29233/sdufeffd.1076262.