Research Article
BibTex RIS Cite

Endüstriyel Anaerobik Reaktörler İçin Enerji Dönüşümünün Hızlandırılmasına Yönelik Bir Çalışma

Year 2022, , 349 - 358, 25.11.2022
https://doi.org/10.29233/sdufeffd.1128452

Abstract

Yenilenebilir enerji kaynaklarından biri olan biyogaz enerjisi Türkiye’de yeni gelişmekte olan bir sektör haline gelmiştir. Türkiye’de mevcut biyogaz reaktörleri genellikle sürekli tip reaktörler olup substrat olarak sığır gübresi (SG) kullanmaktadır. Yapılan araştırmalara göre SG’nin biyogaz verimi literatürdeki verimlerinden oldukça düşük değerde (50-100 ml/g uçucu katı (UKSG)) çıkmaktadır. Bu nedenle SG’nin verimini artırmaya yönelik olan bu çalışma yapılmıştır. Bu bağlamda SG’nin biyogaz verimi laboratuvar ölçekli 5L’lik bir reaktörde endüstriyel reaktörlerin en çok kullandığı çalışma sıcaklığında (35 °C) test edilmiştir. Bu reaktör kontrol reaktörü olarak belirlendikten sonra çözünür karbonhidrat, protein ve yağlardan arınmış ve çoğunlukla lignoselülozik içeren reaktör kalıntısına %4 m/m NaOH ön işlemi ve sonrasında katalitik metallerden olan nikel (Ni) ve kobalt (Co) farklı konsantrasyonlarda (50, 100 ve 150 µg/toplam katı SG) eklenmiştir. Bu sayede kontrol reaktörüne kıyasla, bu metallerin belirli konsantrasyonun eklenmesi ile hidrojenotrofik aktiviteyi uyarabilen ve biyogaz üretimini daha da artırabilen bir sonuçla (%36 - 47) karşılaşılmıştır. En iyi Ni ve Co konsantrasyonu için SG’nin en yüksek biyogaz verimi toplam 509,5 ± 19,9 ml/g UK olmuştur.

Supporting Institution

Giresun Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FEN-BAP-A-250221-47

Thanks

Bu çalışma Giresun Üniversitesi Bilimsel Araştırmalar Birimi tarafından FEN-BAP-A-250221-47 nolu proje ile desteklenmiştir. İlgili kuruma desteklerinden dolayı yazarlar olarak teşekkürlerimizi sunarız.

References

  • H. Şenol, “Biogas potential of hazelnut shells and hazelnut wastes in Giresun City,” Biotechnology Reports, 24, e00361, 2019.
  • H. Şenol, M. A. Dereli̇, and F. Özbilgin, “Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030,” Renew. Sust. Energ. Rev., 149, 111338, 2021.
  • B. Özer, “Biogas energy opportunity of Ardahan city of Turkey,” Energy, 139, 1144-1152, 2017.
  • M. Melikoglu, “Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey,” Renew. Sust. Energ. Rev., 74, 800-808, 2017.
  • S. Bilgen, S. Keleş, İ. Sarıkaya, and K. Kaygusuz, “A perspective for potential and technology of bioenergy in Turkey: present case and future view,” Renew. Sust. Energ. Rev., 48, 228-239, 2015.
  • Y. Li, J. Zhao, J. Krooneman, and G. J. W. Euverink, “Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential,” Sci. Total Environ., 755, 142940, 2021.
  • N. Scarlat, F. Fahl, J.F. Dallemand, F. Monforti, and V. Motola, “A spatial analysis of biogas potential from manure in Europe,” Renew. Sust. Energ. Rev., 94, 915-930, 2018.
  • Z. Wang, S. Yun, J. Shi, F. Han, B. Liu, R. Wang, and X. Li, “Critical evidence for direct interspecies electron transfer with tungsten-based accelerants: an experimental and theoretical investigation,” Bioresource Technol., 311, 123519, 2020.
  • T. A. M. Abdelwahab, M. K. Mohanty, P. K. Sahoo, and D. Behera, “Impact of nickel nanoparticles on biogas production from cattle manure,” Biomass Conversion and Biorefinery, 1, 1-14, 2021.
  • F. Tufaner and Y. Avşar, “Effects of co-substrate on biogas production from cattle manure: a review,” International Journal of Environmental Science and Technology 13 (9), 2303-2312, 2016.
  • S. Yun, T. Xing, F. Han, J. Shi, Z. Wang, Q. Fan, and H. Xu, “Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion,” Bioresource Technol., 320, 124294, 2021.
  • S. Yun, C. Zhang, Y. Wang, J. Zhu, X. Huang, T. Du, X. Li, and Y. Wei, “Synergistic effects of Fe salts and composite additives on anaerobic digestion of dairy manure,” Int. Biodeter. Biodegr., 136, 82-90, 2019.
  • I. Bourven, M. Casellas, R. Buzier, J. Lesieur, J.F. Lenain, A. Faix, P. Bressolier, C. Maftah, and G. Guibaud, “Potential of DGT in a new fractionation approach for studying trace metal element impact on anaerobic digestion: the example of cadmium,” Int. Biodeter. Biodegr., 119, 188-195, 2017.
  • J. Moestedt, E. Nordell, S. S. Yekta, J. Lundgren, M. Martí, C. Sundberg, J. Ejlertsson, B. H. Svensson, and A. Björn, “Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste,” Waste Manage., 47, 11-20, 2016.
  • P. M. Vignais and B. Billoud, “Occurrence, classification, and biological function of hydrogenases: an overview,” Chem. Rev., 107 (10), 4206-4272, 2007.
  • E. Abdelsalam, M. Samer, Y. Attia, M. Abdel-Hadi, H. Hassan, and Y. Badr, “Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry,” Energ. Convers. Manage., 141, 108-119, 2017.
  • H. Şenol, “Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells,” Environ. Sci. Pollut. R., 28 (17), 21661-21673, 2021.
  • R.J. Patinvoh, O.A. Osadolor, K. Chandolias, I.S. Horváth, and M.J. Taherzadeh, “Innovative pretreatment strategies for biogas production, Bioresource Technol., 224, 13-24, 2017.
  • H. Şenol, “Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves,” Bioresource Technol., 300, 122660, 2020.
  • A. Apha, “Standard methods for the examination of water and wastewater,” Apha Washington, 1985.
  • P. V. Van Soest, J. B. Robertson and B. A. Lewis, “Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition,” Journal of Dairy Science, 74 (10) 3583-3597, 1991.
  • H. Şenol, M. Erşan, and E. Görgün, “Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology,” Fuel, 271, 117585, 2020.
  • H. Şenol, “Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network,” Energy, 215, 119173, 2021.
  • H. Şenol, “Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure,” Environ. Prog. Sustain., 39 (6), e13524, 2020.
  • A.M. Mustafa, H. Li, A.A. Radwan, K. Sheng, and X. Chen, “Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production,” Bioresource Technol., 259, 54-60, 2018.
  • R. Selvaggi, G. Pappalardo, G. Chinnici and C.I. Fabbri, “Assessing land efficiency of biomethane industry: A case study of Sicily,” Energ. Policy, 119, 689-695, 2018.
  • N. Scarlat, F. Fahl, J.-F. Dallemand, F. Monforti, and V. Motola, “A spatial analysis of biogas potential from manure in Europe,” Renewable and Sustainable Energy Review, 94, 915-930, 2018.
  • A. Meyer, E. Ehimen, and J. Holm-Nielsen, “Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production,” Biomass and Bioenerg, 111, 154-164, 2018.
  • K. Surendra, D. Takara, A. G. Hashimoto, and S. K. Khanal, “Biogas as a sustainable energy source for developing countries: Opportunities and challenges,” Renewable and Sustainable Energy Review, 31, 846-859, 2014.
  • P. Abdeshahian, J. S. Lim, W. S. Ho, H. Hashim, and C. T. Lee, “Potential of biogas production from farm animal waste in Malaysia,” Renewable and Sustainable Energy Review, 60, 714-723, 2016.
  • H. Afazeli, A. Jafari, S. Rafiee, and M. Nosrati, “An investigation of biogas production potential from livestock and slaughterhouse wastes,” Renewable and Sustainable Energy Review, 34, 380-386, 2014.
  • S. Kanwar and A. Kalia, “Anaerobic fermentation of sheep droppings for biogas production,” World J. Microb. Biot., 9 (2), 174-175, 1993.
  • E. Monteiro, V. Mantha, and A. Rouboa, “Prospective application of farm cattle manure for bioenergy production in Portugal,” Renew. Energ., 36(2), 627-631, 2011.
  • Y. Zheng, J. Zhao, F. Xu, and Y. Li, “Pretreatment of lignocellulosic biomass for enhanced biogas production,” Prog. Energ. Combust., 42, 35-53, 2014.
  • S. Papirio, “Coupling acid pretreatment and dosing of Ni and Se enhances the biomethane potential of hazelnut skin,” J. Clean. Prod., 262, 121407, 2020.
  • E. Abdelsalam, M. Samer, Y. Attia, M. Abdel-Hadi, H. Hassan, and Y. Badr, “Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry,” Renew. Energ., 87, 592-598, 2016.
  • A. Elreedy, E. Ibrahim, N. Hassan, A. El-Dissouky, M. Fujii, C. Yoshimura, and A. Tawfik, “Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol,” Energ. Convers. Manage., 140, 133-144, 2017.
  • H. Pobeheim, B. Munk, J. Johansson, and G. M. Guebitz, “Influence of trace elements on methane formation from a synthetic model substrate for maize silage,” Bioresource Technol., 101 (2), 836-839, 2010.
  • F. G. Fermoso, J. Bartacek, S. Jansen, and P. N. Lens, “Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application,” Sci. Total Environ., 407 (12), 3652-3667, 2009.
  • V. Facchin, C. Cavinato, F. Fatone, P. Pavan, F. Cecchi, and D. Bolzonella, “Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin,” Biochem. Eng. J., 70, 71-77, 2013.

Study on Accelerating Energy Conversion for Industrial Anaerobic Reactors

Year 2022, , 349 - 358, 25.11.2022
https://doi.org/10.29233/sdufeffd.1128452

Abstract

Biogas energy, one of the renewable energy sources, has become a newly developing sector in Turkey. The existing biogas reactors in Turkey are generally continuous type reactors and use cattle manure (CM) as a substrate. According to the researches, the biogas yield of SG is considerably lower than the literature yields (50-100 ml/g volatile solids (VSSG)). Therefore, a study was conducted to increase the yield of CM. In this context, the biogas yield of CM was tested in a laboratory-scale 5L reactor at the operating temperature (35 °C) most commonly used by industrial reactors. After this reactor was determined as a control reactor, the reactor residue, which was free from soluble carbohydrates, proteins and oils and mostly containing lignocellulosic, was obtained. To this residue, 4% w/w NaOH pretreatment and trace metals nickel (Ni) and cobalt (Co) were added at different concentrations (50, 100 and 150 µg/total solids CM). In this way, compared to the control reactor, a result (36 - 47%) that can stimulate hydrogenotrophic activity and further increase biogas production as a result of the addition of these metals at certain concentrations was encountered. As a results of highest biogas yield of CM for the best Ni and Co concentrations was 509.5 ± 19.9 mL/g volatile solids.

Project Number

FEN-BAP-A-250221-47

References

  • H. Şenol, “Biogas potential of hazelnut shells and hazelnut wastes in Giresun City,” Biotechnology Reports, 24, e00361, 2019.
  • H. Şenol, M. A. Dereli̇, and F. Özbilgin, “Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030,” Renew. Sust. Energ. Rev., 149, 111338, 2021.
  • B. Özer, “Biogas energy opportunity of Ardahan city of Turkey,” Energy, 139, 1144-1152, 2017.
  • M. Melikoglu, “Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey,” Renew. Sust. Energ. Rev., 74, 800-808, 2017.
  • S. Bilgen, S. Keleş, İ. Sarıkaya, and K. Kaygusuz, “A perspective for potential and technology of bioenergy in Turkey: present case and future view,” Renew. Sust. Energ. Rev., 48, 228-239, 2015.
  • Y. Li, J. Zhao, J. Krooneman, and G. J. W. Euverink, “Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential,” Sci. Total Environ., 755, 142940, 2021.
  • N. Scarlat, F. Fahl, J.F. Dallemand, F. Monforti, and V. Motola, “A spatial analysis of biogas potential from manure in Europe,” Renew. Sust. Energ. Rev., 94, 915-930, 2018.
  • Z. Wang, S. Yun, J. Shi, F. Han, B. Liu, R. Wang, and X. Li, “Critical evidence for direct interspecies electron transfer with tungsten-based accelerants: an experimental and theoretical investigation,” Bioresource Technol., 311, 123519, 2020.
  • T. A. M. Abdelwahab, M. K. Mohanty, P. K. Sahoo, and D. Behera, “Impact of nickel nanoparticles on biogas production from cattle manure,” Biomass Conversion and Biorefinery, 1, 1-14, 2021.
  • F. Tufaner and Y. Avşar, “Effects of co-substrate on biogas production from cattle manure: a review,” International Journal of Environmental Science and Technology 13 (9), 2303-2312, 2016.
  • S. Yun, T. Xing, F. Han, J. Shi, Z. Wang, Q. Fan, and H. Xu, “Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion,” Bioresource Technol., 320, 124294, 2021.
  • S. Yun, C. Zhang, Y. Wang, J. Zhu, X. Huang, T. Du, X. Li, and Y. Wei, “Synergistic effects of Fe salts and composite additives on anaerobic digestion of dairy manure,” Int. Biodeter. Biodegr., 136, 82-90, 2019.
  • I. Bourven, M. Casellas, R. Buzier, J. Lesieur, J.F. Lenain, A. Faix, P. Bressolier, C. Maftah, and G. Guibaud, “Potential of DGT in a new fractionation approach for studying trace metal element impact on anaerobic digestion: the example of cadmium,” Int. Biodeter. Biodegr., 119, 188-195, 2017.
  • J. Moestedt, E. Nordell, S. S. Yekta, J. Lundgren, M. Martí, C. Sundberg, J. Ejlertsson, B. H. Svensson, and A. Björn, “Effects of trace element addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste,” Waste Manage., 47, 11-20, 2016.
  • P. M. Vignais and B. Billoud, “Occurrence, classification, and biological function of hydrogenases: an overview,” Chem. Rev., 107 (10), 4206-4272, 2007.
  • E. Abdelsalam, M. Samer, Y. Attia, M. Abdel-Hadi, H. Hassan, and Y. Badr, “Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry,” Energ. Convers. Manage., 141, 108-119, 2017.
  • H. Şenol, “Effects of NaOH, thermal, and combined NaOH-thermal pretreatments on the biomethane yields from the anaerobic digestion of walnut shells,” Environ. Sci. Pollut. R., 28 (17), 21661-21673, 2021.
  • R.J. Patinvoh, O.A. Osadolor, K. Chandolias, I.S. Horváth, and M.J. Taherzadeh, “Innovative pretreatment strategies for biogas production, Bioresource Technol., 224, 13-24, 2017.
  • H. Şenol, “Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves,” Bioresource Technol., 300, 122660, 2020.
  • A. Apha, “Standard methods for the examination of water and wastewater,” Apha Washington, 1985.
  • P. V. Van Soest, J. B. Robertson and B. A. Lewis, “Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition,” Journal of Dairy Science, 74 (10) 3583-3597, 1991.
  • H. Şenol, M. Erşan, and E. Görgün, “Optimization of temperature and pretreatments for methane yield of hazelnut shells using the response surface methodology,” Fuel, 271, 117585, 2020.
  • H. Şenol, “Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network,” Energy, 215, 119173, 2021.
  • H. Şenol, “Enhancement in methane yield from anaerobic co‐digestion of walnut shells and cattle manure,” Environ. Prog. Sustain., 39 (6), e13524, 2020.
  • A.M. Mustafa, H. Li, A.A. Radwan, K. Sheng, and X. Chen, “Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production,” Bioresource Technol., 259, 54-60, 2018.
  • R. Selvaggi, G. Pappalardo, G. Chinnici and C.I. Fabbri, “Assessing land efficiency of biomethane industry: A case study of Sicily,” Energ. Policy, 119, 689-695, 2018.
  • N. Scarlat, F. Fahl, J.-F. Dallemand, F. Monforti, and V. Motola, “A spatial analysis of biogas potential from manure in Europe,” Renewable and Sustainable Energy Review, 94, 915-930, 2018.
  • A. Meyer, E. Ehimen, and J. Holm-Nielsen, “Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production,” Biomass and Bioenerg, 111, 154-164, 2018.
  • K. Surendra, D. Takara, A. G. Hashimoto, and S. K. Khanal, “Biogas as a sustainable energy source for developing countries: Opportunities and challenges,” Renewable and Sustainable Energy Review, 31, 846-859, 2014.
  • P. Abdeshahian, J. S. Lim, W. S. Ho, H. Hashim, and C. T. Lee, “Potential of biogas production from farm animal waste in Malaysia,” Renewable and Sustainable Energy Review, 60, 714-723, 2016.
  • H. Afazeli, A. Jafari, S. Rafiee, and M. Nosrati, “An investigation of biogas production potential from livestock and slaughterhouse wastes,” Renewable and Sustainable Energy Review, 34, 380-386, 2014.
  • S. Kanwar and A. Kalia, “Anaerobic fermentation of sheep droppings for biogas production,” World J. Microb. Biot., 9 (2), 174-175, 1993.
  • E. Monteiro, V. Mantha, and A. Rouboa, “Prospective application of farm cattle manure for bioenergy production in Portugal,” Renew. Energ., 36(2), 627-631, 2011.
  • Y. Zheng, J. Zhao, F. Xu, and Y. Li, “Pretreatment of lignocellulosic biomass for enhanced biogas production,” Prog. Energ. Combust., 42, 35-53, 2014.
  • S. Papirio, “Coupling acid pretreatment and dosing of Ni and Se enhances the biomethane potential of hazelnut skin,” J. Clean. Prod., 262, 121407, 2020.
  • E. Abdelsalam, M. Samer, Y. Attia, M. Abdel-Hadi, H. Hassan, and Y. Badr, “Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry,” Renew. Energ., 87, 592-598, 2016.
  • A. Elreedy, E. Ibrahim, N. Hassan, A. El-Dissouky, M. Fujii, C. Yoshimura, and A. Tawfik, “Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol,” Energ. Convers. Manage., 140, 133-144, 2017.
  • H. Pobeheim, B. Munk, J. Johansson, and G. M. Guebitz, “Influence of trace elements on methane formation from a synthetic model substrate for maize silage,” Bioresource Technol., 101 (2), 836-839, 2010.
  • F. G. Fermoso, J. Bartacek, S. Jansen, and P. N. Lens, “Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application,” Sci. Total Environ., 407 (12), 3652-3667, 2009.
  • V. Facchin, C. Cavinato, F. Fatone, P. Pavan, F. Cecchi, and D. Bolzonella, “Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin,” Biochem. Eng. J., 70, 71-77, 2013.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Ayhan Kara 0000-0001-9224-9601

Halil Şenol 0000-0003-3056-5013

Project Number FEN-BAP-A-250221-47
Publication Date November 25, 2022
Published in Issue Year 2022

Cite

IEEE A. Kara and H. Şenol, “Endüstriyel Anaerobik Reaktörler İçin Enerji Dönüşümünün Hızlandırılmasına Yönelik Bir Çalışma”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 349–358, 2022, doi: 10.29233/sdufeffd.1128452.