Research Article
BibTex RIS Cite

209Bi izotopunun (p,xn), (p,xp), (p,xd) ve (p,xt) Reaksiyonlarının Teorik Nükleer Modeller İle İncelenmesi

Year 2023, , 41 - 49, 22.06.2023
https://doi.org/10.29233/sdufeffd.1217959

Abstract

Nükleer fizik alanındaki gelişmeler; arkeoloji, jeoloji, mühendislik, astrofizik, kozmoloji, kimya, biyoloji, tıp gibi bilim dallarını da etkilemektedir. Nükleer reaksiyon mekanizmalarını anlamak, reaksiyon modelleri oluşturmak ve mevcut nükleer reaksiyon modellerinin geçerliliğini değerlendirmek için nükleer modellerin incelenmesi gereklidir. Bu çalışmada protonlarla bombardıman edilen 209-Bi (209Bi) izotopunun nötron, proton, döteryum ve trityum yayınlanma spektrumları incelenmiştir. Çalışmadaki sonuçlar, TALYS 1.95 nükleer reaksiyon kodu kullanılarak yapılmış, elde edilen sonuçlar Uluslararası Deneysel Nükleer Reaksiyon Data (EXFOR) kütüphanesinden elde edilen deneysel verilerle karşılaştırılmıştır. Sonuç olarak incelenen, direkt reaksiyon, bileşik çekirdek ve denge öncesi mekanizmalarının sonuçları deneysel veriler ile uyumlu olarak çıkmıştır.

References

  • K. S. Krane, Nükleer Fizik–II. Çev. Şarer, B., Palme Yayıncılık, Ankara. 2002, 460s.
  • N. Bohr, “Neutron capture and nuclear constitution”, Nature, 137, 344–348,1936.
  • E. Gadioli and P.E. Hodgson, Pre-Equilibrium Nuclear Reactions, Oxford University Press, New York, 199,. 518s.
  • A. J. Koning and J.M. Akkermans, “Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical mod,” 1998 Erişim Tarihi:13.10.2022. ftp://ftp.nrg.eu/pub/www/talys/bib_koning/1998_Koning_preeq_ICTP.pdf.
  • A. Aydin, H. Pekdogan, A. Kaplan, İ. H. Sarpün, E. Tel, B. Demir, 2015. Comparison of Level Density Models for the 60,61,62,64Ni(p,n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV. J. Fusion Energ., 34 (5), 1105-1108.
  • H. Özdoğan, M. Şekerci, İ. H. Sarpün, and A. Kaplan, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isot., 140, 29-34, 2018.
  • H. Özdoğan, Y. A. Üncü, M. Şekerci, and A. Kaplan, “Estimations of level density parameters by using artificial neural network for phenomenological level density models,” Appl. Radiat. Isot., 169, 109583, 2021.
  • O. Karaman, H. Özdoğan, Y. A. Üncü, C. Karaman, and A. G. Tanır, “Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC,” Kerntechnik, 85, 401–407, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Level density model effects on the production cross section calculations of some medical isotopes via (α, xn) reactions where x= 1 3,” Mod. Phys. Lett. A, 35, 2050202, 2020.
  • H. Özdoğan, Y. A. Üncü, O. Karaman, M. Şekerci, and A. Kaplan, “Estimations of giant dipole resonance parameters using artificial neural network,” Appl. Radiat. Isotopes, 169, 109581, 2021.
  • H. Özdoğan, İ. H. Sarpün, M. Şekerci, and A. Kaplan, “Production cross-section calculations of 111In via proton and alpha-induced nuclear reactions,” Mod. Phys. Lett. A, 36 (8), 2150051, 2021.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(a,x) reaction,” Phys. Atom. Nuclei., 83, 820-827, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Astrophysical s-factor calculations under the effects of gamma-ray strength functions for some alpha capture reactions,” Mosc. Univ. Phys. Bull., 75, 585-589, 2020.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Photo-neutron cross-section calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with newly obtained giant dipole resonance parameters,” Appl. Radiat. Isotopes, 165, 109356, 2020.
  • M. Şekerci, “An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions,” Radiochim. Acta, 108 (6), 459-467, 2020.
  • M. Şekerci, “Theoretical cross-section calculations for the (a, n) and (a, 2n) reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes,” Mosc. Univ. Phys. Bull., 75, 123–132, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,g) reactions,” Radiochim. Acta, 108 (1), 11-17, 2020.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Appl. Radiat. Isotopes, 143, 6-10, 2019.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi-empirical formula for the (a,p) reaction cross-section at 19±1 MeV,” Mod. Phys. Lett. A, 34 (6), 1950044, 2019.
  • M. Şekerci. H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Mosc. Univ. Phys. Bull., 74, 277-281, 2019.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “S-Factor Analysis of Proton Capture Reactions on 112,114,116,119Sn and 113,115In Isotopes,” Phys. Atom. Nuclei, 82, 324-329, 2019.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “75-77Br radyoizotoplarının üretim tesir kesiti hesaplamalarında bazı seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 719-729, 2020.
  • M. Şekerci, “Gamma kuvvet fonksiyonlarının bazı samaryum izotoplarının (g,n) ve (g,2n) reaksiyonlarının tesir kesiti hesaplamaları üzerindeki etkileri,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 643-654, 2020.
  • A. Kaplan, M. Şekerci, H. Özdoğan, and B. Demir, “A study on the calculations of cross-sections for 66,67Ga and 75Se radionuclides production reactions via 3He particles,” ESTUJST-A, 21 (4), 554-561, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Charged particle penetration distance and mass stopping power calculations on some nuclear reactor control rod materials,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2), 1103-1115, 2019.
  • M. Şekerci, “Bazı medikal radyoizotopların (a,xn) reaksiyonlarıyla üretim tesir kesiti hesaplamalarında seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4), 2035-2047, 2019.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Füzyon reaktörü yapısal malzemelerinde kullanılan bazı elementler için proton girişli reaksiyonlarda 3He yayınlanma spektrumlarının incelenmesi,” SDÜFEFFD, 13 (1), 12-18, 2018.
  • M. Şekerci and A. Kaplan, “151,153Eu izotoplarında (p,n) ve (p,3n) reaksiyonları için tesir kesiti hesaplamaları ve seviye yoğunluğu modellerinin incelenmesi,” SDÜFEFFD, 13(2), 132-143, 2018.
  • A. Nikjou, M. Sadeghi, M. Sharifian, and R. Baghbani, “Nuclear model calculations on the production of auger electron emitter 111In: As a theranostic radionuclide,” Appl. Radiat. Isotopes, 166, 109354, 2020.
  • A. Jafari, M. R. Aboudzadeh, M. Sharifian, M. Sadeghi, A. Rahiminezhad, B. Alirezapour, and S. Rajabifar, “Cyclotron-based production of the theranostic radionuclide scandium-47 from titanium target,” Nucl. Instrum. Meth. A., 961, 163643, 2020.
  • A. Nikjou and M. Sadeghi, “Overview and evaluation of different nuclear level density models for the 123I radionuclide production,” Appl. Radiat. Isotopes, 136, 45-58, 2018.
  • M. Sadeghi, T. Kakavand, L. Mokhtari, and Z. Gholamzadeh, “Determination of 68Ga production parameters by different reactions using ALICE and TALYS codes,” Pramana - J Phys., 72, 335–341 2009.
  • P.V. Cuong, T.D. Thiep, L.T. Anh, T.T. An, B.M. Hue, K.T. Thanh, N.H. Tan, N.T. Vinh, and T.T. Anh, “Theoretical calculation by Talys code in combination with Geant4 simulation for consideration of γ,n reactions of Eu isotopes in the giant dipole resonance region,” Nucl. Instrum. Meth. A., 479, 68-73, 2020.
  • M. Yiğit, “Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas,” Nucl. Eng., 52, 791-796, 2020.
  • Ö. Sönmez and O. Karaman, “Investigation of level density parameter dependence for some 233U, 235U, 237U, 239U, 249Cf, 251Cf, 237Pu and 247Cm nuclei in neutron fission cross sections with the incident energy up to 20 MeV,” Kerntechnik, 86, 78-85, 2021.
  • R. Santra, B. Dey, S. Roy, Md.S.R. Laskar, R. Palit, H. Pai, S. Rajbanshi, S. Ali, S. Bhattacharjee, F.S. Babra, A. Mukherjee, S. Jadhav, B. S. Naidu, A. T. Vazhappilly, and S. Pal, “Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section,” Phys. Lett., 806, 145487, 2020.
  • B. Canbula, “55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi,” SDÜ Fen Bil. Enst. Der., 24, 138-142, 2020.
  • B. Canbula, “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi,” Celal Bayar University Journal of Science, 13, 445-455, 2017.
  • C. Yalçın, “İnce katman aktivasyon yöntemi için 48Ti(α,n)51Cr reaksiyon tesir kesiti hesabı,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 432-439, 2017.
  • D. Canbula, “Cross section analysis of proton-induced nuclear reactions of thorium,” Nucl. Instrum. Meth. A, 478, 229-232, 2020.
  • J. Luo and L. Jiang, “Activation cross-sections for the 185Re(n, 2n) reaction and the isomeric cross-section ratio of 184m,gRe in the neutron energy range of 13–15 MeV,” Eur. Phys. J. A, 55, 27, 2019.
  • A. Koning, S. Hilaire, and S. Goriely, TALYS 1.95 Nuclear Research and Consultancy Group (NRG), The Netherlands, 2019.
  • A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, “The role of collective effects in the systematics of nuclear level densities,” Yad. Fiz., 29, 875–883, 1979.
  • C. Kalbach, “Two-component exciton model: basic formalism away from shell closures,” Phys. Rev. C, 33 (3), 818—833.
  • W. Hauser and H. Feshbach, “The inelastic scattering of neutrons,” Phys. Rev., 87, 366, 1952.
  • EXFOR, (Experimental Nuclear Reaction Data File), Brookhaven National Laboratory, National Nuclear Data Center, Database Version of 2020-03-02.
  • B.V. Zhuravlev, A.A. Lychagin, N.N. Titarenko, “Nuclear-level densities around Z = 50 from neutron evaporation spectra in (p, n) reactions,” Phys. Atom. Nuclei, 69, 363–370, 2006.
  • N.S.Birjukov, B.V.Zhuravlev, A.P.Rudenko, V.I.Trykova, Neutron spectra and angular distributions from the (p,n) reaction on 165-Ho, 197-Ta, 197-Au, 209-Bi nuclei at E(p)=11.2 MeV,” Phys.Ser., 52, 166,1988.
  • A. M. Kalend, B. D. Anderson, A. R. Baldwin, R. Madey, J. W. Watson, C. C. Chang, H. D. Holmgren, R. W. Koontz, J. R. Wu, and H. Machner, “Energy and angular distributions of neutrons from 90 MeV proton and 140 MeV alpha-particle bombardment of nuclei,” Phys. Rev. C, 28, 105-119, 1983.
  • J. R. Wu, C. C. Chang, and H. D. Holmgren, “Charged-particle spectra: 90 MeV protons on 27Al, 58Ni, 90Zr, and 209Bi,” Phys. Rev. C, 19, 698-713, 1979.

The Investigation of (p,xn), (p,xp), (p,xd) and (p,xt) Reactions of 209Bi isotope with Theoretical Nuclear Models

Year 2023, , 41 - 49, 22.06.2023
https://doi.org/10.29233/sdufeffd.1217959

Abstract

Recent developments in nuclear physics also affect branches of science such as archeology, geology, engineering, astrophysics, cosmology, chemistry, biology, and medicine. Examining nuclear models is necessary to understand nuclear reaction mechanisms, construct reaction models, and evaluate the validity of existing nuclear reaction models and for use in nuclear physics applications. In this study, neutron, proton, deuterium, and tritium emission spectra of 209-Bi (209Bi) isotope bombarded with protons has been investigated. The results of the study have been made using the TALYS 1.95 nuclear reaction code, and the results have been compared with the experimental data obtained from the International Experimental Nuclear Reaction Data (EXFOR) library. Consequently, the results of the direct reaction, compound nuclei, and pre-equilibrium mechanisms examined have been in agreement with the experimental data.

References

  • K. S. Krane, Nükleer Fizik–II. Çev. Şarer, B., Palme Yayıncılık, Ankara. 2002, 460s.
  • N. Bohr, “Neutron capture and nuclear constitution”, Nature, 137, 344–348,1936.
  • E. Gadioli and P.E. Hodgson, Pre-Equilibrium Nuclear Reactions, Oxford University Press, New York, 199,. 518s.
  • A. J. Koning and J.M. Akkermans, “Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical mod,” 1998 Erişim Tarihi:13.10.2022. ftp://ftp.nrg.eu/pub/www/talys/bib_koning/1998_Koning_preeq_ICTP.pdf.
  • A. Aydin, H. Pekdogan, A. Kaplan, İ. H. Sarpün, E. Tel, B. Demir, 2015. Comparison of Level Density Models for the 60,61,62,64Ni(p,n) Reactions of Structural Fusion Material Nickel from Threshold to 30 MeV. J. Fusion Energ., 34 (5), 1105-1108.
  • H. Özdoğan, M. Şekerci, İ. H. Sarpün, and A. Kaplan, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isot., 140, 29-34, 2018.
  • H. Özdoğan, Y. A. Üncü, M. Şekerci, and A. Kaplan, “Estimations of level density parameters by using artificial neural network for phenomenological level density models,” Appl. Radiat. Isot., 169, 109583, 2021.
  • O. Karaman, H. Özdoğan, Y. A. Üncü, C. Karaman, and A. G. Tanır, “Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC,” Kerntechnik, 85, 401–407, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Level density model effects on the production cross section calculations of some medical isotopes via (α, xn) reactions where x= 1 3,” Mod. Phys. Lett. A, 35, 2050202, 2020.
  • H. Özdoğan, Y. A. Üncü, O. Karaman, M. Şekerci, and A. Kaplan, “Estimations of giant dipole resonance parameters using artificial neural network,” Appl. Radiat. Isotopes, 169, 109581, 2021.
  • H. Özdoğan, İ. H. Sarpün, M. Şekerci, and A. Kaplan, “Production cross-section calculations of 111In via proton and alpha-induced nuclear reactions,” Mod. Phys. Lett. A, 36 (8), 2150051, 2021.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(a,x) reaction,” Phys. Atom. Nuclei., 83, 820-827, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Astrophysical s-factor calculations under the effects of gamma-ray strength functions for some alpha capture reactions,” Mosc. Univ. Phys. Bull., 75, 585-589, 2020.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Photo-neutron cross-section calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with newly obtained giant dipole resonance parameters,” Appl. Radiat. Isotopes, 165, 109356, 2020.
  • M. Şekerci, “An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions,” Radiochim. Acta, 108 (6), 459-467, 2020.
  • M. Şekerci, “Theoretical cross-section calculations for the (a, n) and (a, 2n) reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes,” Mosc. Univ. Phys. Bull., 75, 123–132, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,g) reactions,” Radiochim. Acta, 108 (1), 11-17, 2020.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Appl. Radiat. Isotopes, 143, 6-10, 2019.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi-empirical formula for the (a,p) reaction cross-section at 19±1 MeV,” Mod. Phys. Lett. A, 34 (6), 1950044, 2019.
  • M. Şekerci. H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Mosc. Univ. Phys. Bull., 74, 277-281, 2019.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “S-Factor Analysis of Proton Capture Reactions on 112,114,116,119Sn and 113,115In Isotopes,” Phys. Atom. Nuclei, 82, 324-329, 2019.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “75-77Br radyoizotoplarının üretim tesir kesiti hesaplamalarında bazı seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 719-729, 2020.
  • M. Şekerci, “Gamma kuvvet fonksiyonlarının bazı samaryum izotoplarının (g,n) ve (g,2n) reaksiyonlarının tesir kesiti hesaplamaları üzerindeki etkileri,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 643-654, 2020.
  • A. Kaplan, M. Şekerci, H. Özdoğan, and B. Demir, “A study on the calculations of cross-sections for 66,67Ga and 75Se radionuclides production reactions via 3He particles,” ESTUJST-A, 21 (4), 554-561, 2020.
  • M. Şekerci, H. Özdoğan, and A. Kaplan, “Charged particle penetration distance and mass stopping power calculations on some nuclear reactor control rod materials,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2), 1103-1115, 2019.
  • M. Şekerci, “Bazı medikal radyoizotopların (a,xn) reaksiyonlarıyla üretim tesir kesiti hesaplamalarında seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4), 2035-2047, 2019.
  • H. Özdoğan, M. Şekerci, and A. Kaplan, “Füzyon reaktörü yapısal malzemelerinde kullanılan bazı elementler için proton girişli reaksiyonlarda 3He yayınlanma spektrumlarının incelenmesi,” SDÜFEFFD, 13 (1), 12-18, 2018.
  • M. Şekerci and A. Kaplan, “151,153Eu izotoplarında (p,n) ve (p,3n) reaksiyonları için tesir kesiti hesaplamaları ve seviye yoğunluğu modellerinin incelenmesi,” SDÜFEFFD, 13(2), 132-143, 2018.
  • A. Nikjou, M. Sadeghi, M. Sharifian, and R. Baghbani, “Nuclear model calculations on the production of auger electron emitter 111In: As a theranostic radionuclide,” Appl. Radiat. Isotopes, 166, 109354, 2020.
  • A. Jafari, M. R. Aboudzadeh, M. Sharifian, M. Sadeghi, A. Rahiminezhad, B. Alirezapour, and S. Rajabifar, “Cyclotron-based production of the theranostic radionuclide scandium-47 from titanium target,” Nucl. Instrum. Meth. A., 961, 163643, 2020.
  • A. Nikjou and M. Sadeghi, “Overview and evaluation of different nuclear level density models for the 123I radionuclide production,” Appl. Radiat. Isotopes, 136, 45-58, 2018.
  • M. Sadeghi, T. Kakavand, L. Mokhtari, and Z. Gholamzadeh, “Determination of 68Ga production parameters by different reactions using ALICE and TALYS codes,” Pramana - J Phys., 72, 335–341 2009.
  • P.V. Cuong, T.D. Thiep, L.T. Anh, T.T. An, B.M. Hue, K.T. Thanh, N.H. Tan, N.T. Vinh, and T.T. Anh, “Theoretical calculation by Talys code in combination with Geant4 simulation for consideration of γ,n reactions of Eu isotopes in the giant dipole resonance region,” Nucl. Instrum. Meth. A., 479, 68-73, 2020.
  • M. Yiğit, “Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas,” Nucl. Eng., 52, 791-796, 2020.
  • Ö. Sönmez and O. Karaman, “Investigation of level density parameter dependence for some 233U, 235U, 237U, 239U, 249Cf, 251Cf, 237Pu and 247Cm nuclei in neutron fission cross sections with the incident energy up to 20 MeV,” Kerntechnik, 86, 78-85, 2021.
  • R. Santra, B. Dey, S. Roy, Md.S.R. Laskar, R. Palit, H. Pai, S. Rajbanshi, S. Ali, S. Bhattacharjee, F.S. Babra, A. Mukherjee, S. Jadhav, B. S. Naidu, A. T. Vazhappilly, and S. Pal, “Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section,” Phys. Lett., 806, 145487, 2020.
  • B. Canbula, “55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi,” SDÜ Fen Bil. Enst. Der., 24, 138-142, 2020.
  • B. Canbula, “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi,” Celal Bayar University Journal of Science, 13, 445-455, 2017.
  • C. Yalçın, “İnce katman aktivasyon yöntemi için 48Ti(α,n)51Cr reaksiyon tesir kesiti hesabı,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 432-439, 2017.
  • D. Canbula, “Cross section analysis of proton-induced nuclear reactions of thorium,” Nucl. Instrum. Meth. A, 478, 229-232, 2020.
  • J. Luo and L. Jiang, “Activation cross-sections for the 185Re(n, 2n) reaction and the isomeric cross-section ratio of 184m,gRe in the neutron energy range of 13–15 MeV,” Eur. Phys. J. A, 55, 27, 2019.
  • A. Koning, S. Hilaire, and S. Goriely, TALYS 1.95 Nuclear Research and Consultancy Group (NRG), The Netherlands, 2019.
  • A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, “The role of collective effects in the systematics of nuclear level densities,” Yad. Fiz., 29, 875–883, 1979.
  • C. Kalbach, “Two-component exciton model: basic formalism away from shell closures,” Phys. Rev. C, 33 (3), 818—833.
  • W. Hauser and H. Feshbach, “The inelastic scattering of neutrons,” Phys. Rev., 87, 366, 1952.
  • EXFOR, (Experimental Nuclear Reaction Data File), Brookhaven National Laboratory, National Nuclear Data Center, Database Version of 2020-03-02.
  • B.V. Zhuravlev, A.A. Lychagin, N.N. Titarenko, “Nuclear-level densities around Z = 50 from neutron evaporation spectra in (p, n) reactions,” Phys. Atom. Nuclei, 69, 363–370, 2006.
  • N.S.Birjukov, B.V.Zhuravlev, A.P.Rudenko, V.I.Trykova, Neutron spectra and angular distributions from the (p,n) reaction on 165-Ho, 197-Ta, 197-Au, 209-Bi nuclei at E(p)=11.2 MeV,” Phys.Ser., 52, 166,1988.
  • A. M. Kalend, B. D. Anderson, A. R. Baldwin, R. Madey, J. W. Watson, C. C. Chang, H. D. Holmgren, R. W. Koontz, J. R. Wu, and H. Machner, “Energy and angular distributions of neutrons from 90 MeV proton and 140 MeV alpha-particle bombardment of nuclei,” Phys. Rev. C, 28, 105-119, 1983.
  • J. R. Wu, C. C. Chang, and H. D. Holmgren, “Charged-particle spectra: 90 MeV protons on 27Al, 58Ni, 90Zr, and 209Bi,” Phys. Rev. C, 19, 698-713, 1979.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Hasan Özdoğan 0000-0001-6127-9680

Yiğit Ali Üncü 0000-0001-7398-9540

Publication Date June 22, 2023
Published in Issue Year 2023

Cite

IEEE H. Özdoğan and Y. A. Üncü, “209Bi izotopunun (p,xn), (p,xp), (p,xd) ve (p,xt) Reaksiyonlarının Teorik Nükleer Modeller İle İncelenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 18, no. 2, pp. 41–49, 2023, doi: 10.29233/sdufeffd.1217959.