Research Article
BibTex RIS Cite

Validation of Monte Carlo Simulations with GAMOS for the Elekta Synergy Agility LINAC: Comparative Study of UBS, DBS, and EWBS Variance Reduction Techniques

Year 2025, Volume: 20 Issue: 2, 160 - 174, 26.11.2025

Abstract

The Monte Carlo code GAMOS 6.2.0, based on version 10.06.p02 of GEANT4, was employed to model the Elekta Synergy Agility linear accelerator (Linac). The Linac’s irradiation head was simulated by modeling the target, primary collimator, flattening filter, ionization chamber, and the X and Y jaws. Phase spaces were then simulated after the X and Y jaws for each variance reduction technique: UBS (Uniform Bremsstrahlung Splitting), DBS (Directional Bremsstrahlung Splitting), and EWBS (Equal Weight Bremsstrahlung Splitting), with field sizes of 5 × 5 cm² and 10 × 10 cm². The dose distribution was subsequently calculated for each variance reduction technique in a homogeneous water phantom at depths of 5 cm, 10 cm, 15 cm, and 20 cm. The results obtained were compared with experimental data using the gamma index, with an acceptance criterion of 3% for dose difference (DD) and 3 mm for distance-to-agreement (DTA). For a 5 × 5 cm² field size, a 94% agreement was obtained between the simulated and experimental data for depth-dose curves using the three techniques: EWBS, DBS, and UBS. Regarding dose profiles, the EWBS, DBS, and UBS techniques showed excellent agreement of 100% with the experimental data for a 5 × 5 cm² field at a depth of 5 cm. At 10 cm depth, the EWBS technique achieved 100% agreement, followed by DBS at 98%. At 15 cm depth, EWBS and DBS also showed 100% agreement, while UBS achieved 97%. Finally, at 20 cm depth, EWBS presented 100% agreement, followed by DBS and UBS at 99%. For a 10 × 10 cm² field size, a 96% agreement was achieved between the simulated and experimental data for depth-dose curves with the three techniques: EWBS, DBS, and UBS. Regarding dose profiles, the EWBS technique showed 99% agreement, followed by DBS at 98% at a depth of 5 cm. At a depth of 10 cm, EWBS showed 99% agreement, followed by UBS at 98%. At 15 cm depth, EWBS reached 100% agreement, followed by DBS at 99%. Finally, at 20 cm depth, EWBS maintained 100% agreement, followed by DBS at 97%. The results of this study are significant for medical physics applications, as they can guide radiotherapy practitioners in selecting the most appropriate technique for their simulations. Thus, this paper contributes to the advancement of simulation method development and validation, which can ultimately lead to safer and more effective treatments for cancer patients.

References

  • F. Salvat, “PENELOPE-2018: A Code System for Monte Carlo Simulation of Electron and Photon Transport Document NEA/MBDAV/R (2019) 1.” Boulogne-Billancourt: OECD Nuclear Energy Agency, 2019.
  • J. F. Briesmeister, (2000) MCNPTM—A General Monte Carlo N-particle Transport Code. Los Alamos National Laboratory, Los Alamos. https://s3.cern.ch/inspire-prod-files-7/78c669e8d3bb59ccf6fb868a6061450c
  • J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Dubois, M. Asai, S. Chauvie, R. F. Heinemann, Y. Kurashige, S. Magni, K. Maire, H. Nakamura, T. Nikitina, M. Perl, M. G. Pia, L. Urban, and H. Yoshida, “Geant4 developments and applications”, IEEE Transactions on Nuclear Science, 53(1), 270–278, 2006.
  • S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, ... and Geant4 Collaboration, “GEANT4—a simulation toolkit”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303, 2003.
  • G. Battistoni, F. Cerutti, A. Fasso, A. Ferrari, S. Muraro, J. Ranft, … and P. R. Sala, “The FLUKA code: Description and benchmarking”, AIP Conference Proceedings, American Institute of Physics, 896, 1, pp. 31-49, 2007.
  • A. Ferrari, J. Ranft, P. R. Sala, and A. Fassò, (2005). FLUKA: A multi-particle transport code (Program version 2005) (No. CERN-2005-10). Cern. https://cds.cern.ch/record/898301
  • I. Kawrakow and D. W. O. Rogers, “The EGSnrc System, a Status Report”, Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23-26 October 2000, pp. 135-140, Springer, Berlin, Heidelberg, 2001.
  • H. Hirayama, Y. Namito, A. F. Bielajew, S. J. Wilderman and W. R. Nelson, “The EGS5 Code System”, SLAC-R-730, KEK Report 2005-8, 2005.
  • E. Brun, F. Damian, C. M. Diop, E. Dumonteil, F. X. Hugot, C. Jouanne, … and A. Zoia, “Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code”, SNA+ MC 2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, p. 06023, EDP Sciences, 2014.
  • T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. I. Abe, T. Kai, S. Kanai, N. Kishimoto, L. Sihver, K. Sato, H. Iwase, N. Shigyo, H. Nakashima, T. Matsuda, S. Murakami, and K. Niita, “Features of particle and heavy ion transport code system (PHITS) version 3.02”, Journal of Nuclear Science and Technology, 55(6), 684–690, 2018.
  • P. Arce, J. I. Lagares, L. Harkness, D. Pérez-Astudillo, M. Cañadas, P. Rato, I. Abril, R. Alonso, M. Cortés-Giraldo, A. Delgado, A. Díaz, A. García, I. Gonzalo, C. Hernández, A. Martín, M. Mayo, J. Porras, J. Romero, and A. Díaz, “Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 304–313, 2014.
  • A. F. Bielajew and D. W. Rogers, “Variance-reduction techniques”, in Monte Carlo Transport of Electrons and Photons, T. M. Jenkins, W. R. Nelson, and A. Rindi, Eds., pp. 407–419, 1988.
  • P. Arce, J. I. Lagares, D. Perez-Astudillo, J. Apostolakis, and G. Cosmo, “Optimization of an external beam radiotherapy treatment using GAMOS/Geant4”, World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, September 7-12, 2009, vol. 25/1, Radiation Oncology, pp. 794-797, Springer Berlin Heidelberg, 2009.
  • GAMOS (2020) GAMOS.6.2.0 User’s Guide. https://fismed.ciemat.es/GAMOS/gamos_userguide.php
  • P. Arce and J. I. Lagares, “CPU time optimization and precise adjustment of the Geant4 physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator simulation using GAMOS”, Physics in Medicine & Biology, 63(3), 035007, 2018.
  • I. Kawrakow, D. W. O. Rogers, and B. R. B. Walters, “Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting: directional bremsstrahlung splitting”, Medical Physics, 31(10), 2883–2898, 2004.
  • S. García-Pareja, A. M. Lallena, and F. Salvat, “Variance-reduction methods for Monte Carlo simulation of radiation transport”, Frontiers in Physics, 9, 718873, 2021.
  • X. Fan, K. Wang, and G. Zhang, “Development of variance reduction techniques in Monte Carlo code RMC”, Proceeding of the Reactor Physics Asia 2015 Conference, Jeju, Korea, September 2015.
  • M. Mohammed, E. Chakir, H. Boukhal, M. Saeed, and T. El Bardouni, “Evaluation of variance reduction techniques in BEAMnrc Monte Carlo simulation to improve the computing efficiency”, Journal of Radiation Research and Applied Sciences, 9(4), 424–430, 2016.
  • M. Assalmi and E. Y. Diaf, “Optimization techniques and parameters setting of the GAMOS code in the Monte Carlo simulation of a medical accelerator”, Moscow University Physics Bulletin, 77(5), 511–523, 2022.
  • H. Babapour, S. Semyari, M. Yadollahi, M. Majdaeen, R. Abedi-Firouzjah, and G. Ataei, “Assessing the effect of directional bremsstrahlung splitting on the output spectra and parameters using BEAMnrc Monte Carlo simulation package”, Biomedical Engineering and Computational Biology, 13, 11795972221138473, 2022.
  • T. Almatani, “Optimisation of variance reduction techniques in EGSnrc Monte Carlo for a 6 MV photon beam of an Elekta Synergy linear accelerator”, Journal of King Saud University - Science, 33(4), 101421, 2021.
  • International Atomic Energy Agency (IAEA). Nuclear Data Section. https://www-nds.iaea.org/phsp/phsp.htmlx
  • N. Ndiaye, O. Ndiaye, P. M. Faye, K. J. F. N’Guessan, D. Dione, K. Sy, A. S. Ndao, and A. Sarr, “Enhancing precision in radiotherapy delivery: validating Monte Carlo simulation models for 6 MV Elekta Synergy Agility LINAC photon beam using two models of the GAMOS code”, World Journal of Nuclear Science and Technology, 14(2), 146–163, 2024.
  • D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, “A technique for the quantitative evaluation of dose distributions”, Medical Physics, 25(5), 656–661, 1998.
  • D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method”, Medical Physics, 30(9), 2455–2464, 2003.
  • Technical Reports Series No.430, (2004), Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer, International Atomic Energy Agency, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/TRS430_web.pdf
  • IAEA-TECDOC-1540, (2007), Specification and Acceptance Testing of Radiotherapy Treatment Planning Systems, International Atomic Energy Agency, Vienna. https://wwwpub.iaea.org/MTCD/Publications/PDF/te_1540_web.pdf.
  • S. Shanmugasundaram and S. Chandrasekaran, “Optimization of variance reduction techniques used in EGSnrc Monte Carlo codes”, Journal of Medical Physics, 43(3), 185–194, 2018.
  • M. A. Cortes-Giraldo, P. Arce, J. Salguero, M. I. Gallardo, J. M. Quesada, A. Leal, and R. Arráns, “GAMOS/Geant4 Validation in a Siemens PRIMUS Linac”, Proc. 2008 IEEE Nuclear Science Symposium Conference Record, October 2008.
  • B. Kadman, N. Chawapun, S. Ua-Apisitwong, T. Asakit, N. Chumpu, and J. Rueansri, “Consistency check of photon beam physical data after recommissioning process”, in Journal of Physics: Conference Series, IOP Publishing, 694, 1, 012023, 2016.
  • M. Aljamal and A. Zakaria, “Monte Carlo modeling of a Siemens Primus 6 MV photon beam linear accelerator”, Australian Journal of Basic and Applied Sciences, 7(10), 340–346, 2013.
There are 32 citations in total.

Details

Primary Language English
Subjects Medical Physics
Journal Section Research Article
Authors

Nogaye Ndiaye 0009-0008-1710-569X

Oumar Ndiaye This is me 0009-0004-8230-0353

Djicknack Dione This is me 0000-0002-9011-8680

Jean Paul Latyr Faye This is me 0000-0002-4680-1810

Alassane Traoré This is me 0000-0002-9927-2588

Ababacar Sadikhe Ndao This is me 0000-0002-8930-0514

Submission Date February 15, 2025
Acceptance Date September 18, 2025
Publication Date November 26, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

IEEE N. Ndiaye, O. Ndiaye, D. Dione, J. P. L. Faye, A. Traoré, and A. S. Ndao, “Validation of Monte Carlo Simulations with GAMOS for the Elekta Synergy Agility LINAC: Comparative Study of UBS, DBS, and EWBS Variance Reduction Techniques”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 20, no. 2, pp. 160–174, 2025, doi: 10.29233/sdufeffd.1633314.