Research Article
BibTex RIS Cite

Ultrasonik Sprey Piroliz Yöntemi ile Üretilen Güneş Soğurucu CH3NH3PbI3-xClx Perovskit Yapısının Optik, Morfolojik ve Yapısal Özelliklerinin İncelenmesi

Year 2020, , 253 - 263, 29.11.2020
https://doi.org/10.29233/sdufeffd.811095

Abstract

Bu çalışmada ultrasonik sprey piroliz yöntemi ile cam alttaşlar üzerine CH3NH3PbI3-xClx perovskit ince filmler kaplanmıştır. Alttaş sıcaklığının perovskit filmlerin yapısal, morfolojik ve optik özellikleri üzerine etkisi, X-ışını kırınım (XRD) cihazı, taramalı elektron mikroskobu (SEM), atomik kuvvet mikroskobu (AFM) ve Uv-Vis spektrofotometresi kullanılarak araştırılmıştır. XRD spektrumları incelendiğinde, tüm filmlerin tetragonal perovskit örgü yapısında olduğu ancak 75 °C ve 100 °C alttaş sıcaklığı uygulanan ince filmlerde farklı kristal yapılara ait fazladan piklerinde olduğu görülmüştür. Filmlere sonradan herhangi bir tavlama işlemi uygulanmadığı halde, 125 °C alttaş sıcaklığında kaplanan filmlerin literatür ile birebir uyumlu saf perovskit kristali formunda olduğu tespit edilmiştir. XRD spektrum verileri ve Debye-Scherrer formülü kullanılarak ince filmlerin kristal boyutları belirlenmiştir. En yüksek kristal boyutu 743 Å ile 125 °C alttaş sıcaklığında kaplanan filmlerde elde edilmiştir. SEM görüntüleri incelendiğinde film yüzeylerinin sadece 125 °C alttaş sıcaklığında homojen kaplandığı ve kristal tanecikler arasında boşlukların oluşmadığı saptanmıştır. Filmlerin yüzey pürüzlülüğü atomik kuvvet mikroskobu ile incelenmiş, en düşük yüzey pürüzlülüğü 41.32 nm ile 125 °C alttaş sıcaklığına sahip olan ince filmde elde edilmiştir. Optik soğurma ölçümleri, oda sıcaklığında çalıştırılan Uv-Vis spektrofotometre kullanılarak gerçekleştirilmiştir. Filmler kaplanırken uygulanan alttaş sıcaklığı artıkça filme ait yasak bant aralığının 1.20’ eV tan teorik analizler ile de uyuşan 1.56 eV’ a çıktığı görülmüştür.

Supporting Institution

Süleyman Demirel Üniversitesi BAP Koordinasyon Birimi

Project Number

FDK-2018-6816

Thanks

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi ne bu çalışmaya verdikleri katkıdan ötürü teşekkürlerimizi sunarız.

References

  • [1] H. S. Kim, S. H. Im, and N. G. Park, “Organolead halide perovskite: New horizons in solar cell research,” J. Phys. Chem. C, vol. 118, no. 11, pp. 5615–5625, 2014.
  • [2] Y. Ma et al., “Recent Research Developments of Perovskite Solar Cells,” Chinese J. Chem., vol. 32, no. 10, pp. 957–963, 2014.
  • [3] M. Grätzel, “The light and shade of perovskite solar cells,” Nat. Mater., vol. 13, no. 9, pp. 838–842, 2014.
  • [4] Q. Chen et al., “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc., vol. 136, no. 2, pp. 622–625, 2014.
  • [5] W. Ke et al., “Perovskite solar cell with an efficient TiO2 compact film,” ACS Appl. Mater. Interfaces, vol. 6, no. 18, pp. 15959–15965, 2014.
  • [6] S. Razza et al., “Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process,” J. Power Sources, vol. 277, pp. 286–291, 2015.
  • [7] D. Bayuwati, “Comparison of SnO2/Si-n Thin Films Deposited by Pneumatic Spray Pyrolysis Technique with that Deposited by Ultrasonic Spray Pyrolysis Technique,” Indones. J. Mater. Sci., pp. 241–245, 2008.
  • [8] A. Arunachalam, S. Dhanapandian, C. Manoharan, and G. Sivakumar, “Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 138, pp. 105–112, 2015.
  • [9] S. Das et al., “High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing,” ACS Photonics, vol. 2, no. 6, pp. 680–686, 2015.
  • [10] L. A. Patil, V. V. Deo, M. D. Shinde, A. R. Bari, D. M. Patil, and M. P. Kaushik, “Ultrasonically sprayed nanostructured perovskite-type CdSnO3 thin films for sensing of CWA simulants,” IEEE Sens. J., vol. 14, no. 9, pp. 3014–3020, 2014.
  • [11] F. Zabihi, M. R. Ahmadian-Yazdi, and M. Eslamian, “Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC),” Nanoscale Res. Lett., vol. 11, no. 1, pp. 1–15, 2016.
  • [12] M. Koç, “Farklı Azot Akış Hızına Sahip Ortamlarda Isıl İşlem Uygulanmış Ultrasonik Sprey Piroliz Yöntemiyle Oluşturulan Sn-Katkılı İndiyum Oksit İnce Filmlerin Fiziksel ve Optik Özelliklerinin İncelenmesi,” Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Fizik ABD, Doktora Tezi, 2018.
  • [13] R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am., vol. 34, no. 1, pp. 6–8, Jan. 1962.
  • [14] B. W. Mwakikunga, “Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday,” Crit. Rev. Solid State Mater. Sci., vol. 39, no. 1, pp. 46–80, 2014.
  • [15] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Il Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater., vol. 13, no. 9, pp. 897–903, 2014.
  • [16] J. Caram, N. Budini, and R. D. Arce, “Analysis of substrate coverage of hybrid halide perovskite thin films deposited on glass,” Rev. Mater., vol. 23, no. 2, 2018.
  • [17] S. Bai et al., “High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering,” Nano Res., vol. 7, no. 12, pp. 1749–1758, 2014.
  • [18] N. K. Noel et al., “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci., vol. 7, no. 9, pp. 3061–3068, 2014.
  • [19] J. Schoonman, “Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem,” Chem. Phys. Lett., vol. 619, pp. 193–195, 2015.
  • [20] J. Su et al., “On the growth of CH3NH3PbI3-xClx single crystal and characterization,” Phys. B Condens. Matter, vol. 537, no. January, pp. 7–11, 2018.
  • [21] B. S. Kim, G. H. Moon, S. C. Park, J. Jang, and Y. S. Kang, “Effects of crystal size and surface coverage of perovskites on electron recombination in solar cells,” Mater. Lett., vol. 242, pp. 191–194, 2019.
  • [22] S. Wang et al., “Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method,” J. Mater. Chem. A, vol. 3, no. 28, pp. 14631–14641, 2015.
  • [23] Chaminda Hettiarachchi, Nicholas Valdes, Pritish Mukherjee, and Sarath Witanachchi, “A Novel Single-Step Growth Process for the Deposition of CH3NH3PbI3-xClx Perovskite Films from CH3NH3Cl and PbI2 Precursors,” J. Mater. Sci. Eng. A, vol. 6, no. 5, pp. 233–242, 2016.
  • [24] Y. Li et al., “High-Performance Planar Solar Cells Based on CH3NH3PbI3-xClx Perovskites with Determined Chlorine Mole Fraction,” Adv. Funct. Mater., vol. 25, no. 30, pp. 4867–4873, 2015.

Investigation of Optical, Morphological and Structural Properties of Solar Absorber CH3NH3PbI3-xClx Perovskite Structure Produced by Ultrasonic Spray Pyrolysis Method

Year 2020, , 253 - 263, 29.11.2020
https://doi.org/10.29233/sdufeffd.811095

Abstract

In this study, CH3NH3PbI3-xClx perovskite thin films were deposited on glass substrates by the ultrasonic spray pyrolysis method. The effect of substrate temperature on the structural, morphological and optical properties of perovskite films was investigated using an X-ray diffraction (XRD) device, scanning electron microscope (SEM), atomic force microscope (AFM), and Uv-Vis spectrophotometer. When the X-ray diffraction spectra were observed, it was determined that all films were formed in the tetragonal perovskite lattice structure, but it was observed that different undesirable crystal structures were formed in thin films with 75 °C and 100 °C substrate temperatures. Although no post-annealing process was applied to the films, it was determined that the films coated at 125 ° C substrate temperature were in the form of pure perovskite crystals, which are exactly compatible with the literature. The crystal sizes of thin films were determined by using XRD spectrum data and Debye-Scherrer formula. The highest crystal size was obtained as 743 Å for the thin film deposited at a substrate temperature of 125 °C. When the SEM images were examined, it was determined that the film surfaces were homogeneously coated at only 125 °C substrate temperature and that there were no voids between the crystal particles. The surface roughness of the films was examined by atomic force microscopy system, and the smoothest surface roughness was obtained in the thin film deposited at 125 °C substrate temperature with 41.32 nm. Optical absorption studies were carried out by using a Uv-Vis spectrophotometer operated at room temperature. It was observed that as the substrate temperature applied while coating the films increased, the forbidden bandgap of the film increased from 1.20 eV to 1.56 eV, which is also compatible with the theoretical analysis.

Project Number

FDK-2018-6816

References

  • [1] H. S. Kim, S. H. Im, and N. G. Park, “Organolead halide perovskite: New horizons in solar cell research,” J. Phys. Chem. C, vol. 118, no. 11, pp. 5615–5625, 2014.
  • [2] Y. Ma et al., “Recent Research Developments of Perovskite Solar Cells,” Chinese J. Chem., vol. 32, no. 10, pp. 957–963, 2014.
  • [3] M. Grätzel, “The light and shade of perovskite solar cells,” Nat. Mater., vol. 13, no. 9, pp. 838–842, 2014.
  • [4] Q. Chen et al., “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc., vol. 136, no. 2, pp. 622–625, 2014.
  • [5] W. Ke et al., “Perovskite solar cell with an efficient TiO2 compact film,” ACS Appl. Mater. Interfaces, vol. 6, no. 18, pp. 15959–15965, 2014.
  • [6] S. Razza et al., “Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process,” J. Power Sources, vol. 277, pp. 286–291, 2015.
  • [7] D. Bayuwati, “Comparison of SnO2/Si-n Thin Films Deposited by Pneumatic Spray Pyrolysis Technique with that Deposited by Ultrasonic Spray Pyrolysis Technique,” Indones. J. Mater. Sci., pp. 241–245, 2008.
  • [8] A. Arunachalam, S. Dhanapandian, C. Manoharan, and G. Sivakumar, “Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 138, pp. 105–112, 2015.
  • [9] S. Das et al., “High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing,” ACS Photonics, vol. 2, no. 6, pp. 680–686, 2015.
  • [10] L. A. Patil, V. V. Deo, M. D. Shinde, A. R. Bari, D. M. Patil, and M. P. Kaushik, “Ultrasonically sprayed nanostructured perovskite-type CdSnO3 thin films for sensing of CWA simulants,” IEEE Sens. J., vol. 14, no. 9, pp. 3014–3020, 2014.
  • [11] F. Zabihi, M. R. Ahmadian-Yazdi, and M. Eslamian, “Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC),” Nanoscale Res. Lett., vol. 11, no. 1, pp. 1–15, 2016.
  • [12] M. Koç, “Farklı Azot Akış Hızına Sahip Ortamlarda Isıl İşlem Uygulanmış Ultrasonik Sprey Piroliz Yöntemiyle Oluşturulan Sn-Katkılı İndiyum Oksit İnce Filmlerin Fiziksel ve Optik Özelliklerinin İncelenmesi,” Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Fizik ABD, Doktora Tezi, 2018.
  • [13] R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am., vol. 34, no. 1, pp. 6–8, Jan. 1962.
  • [14] B. W. Mwakikunga, “Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday,” Crit. Rev. Solid State Mater. Sci., vol. 39, no. 1, pp. 46–80, 2014.
  • [15] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Il Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater., vol. 13, no. 9, pp. 897–903, 2014.
  • [16] J. Caram, N. Budini, and R. D. Arce, “Analysis of substrate coverage of hybrid halide perovskite thin films deposited on glass,” Rev. Mater., vol. 23, no. 2, 2018.
  • [17] S. Bai et al., “High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering,” Nano Res., vol. 7, no. 12, pp. 1749–1758, 2014.
  • [18] N. K. Noel et al., “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci., vol. 7, no. 9, pp. 3061–3068, 2014.
  • [19] J. Schoonman, “Organic-inorganic lead halide perovskite solar cell materials: A possible stability problem,” Chem. Phys. Lett., vol. 619, pp. 193–195, 2015.
  • [20] J. Su et al., “On the growth of CH3NH3PbI3-xClx single crystal and characterization,” Phys. B Condens. Matter, vol. 537, no. January, pp. 7–11, 2018.
  • [21] B. S. Kim, G. H. Moon, S. C. Park, J. Jang, and Y. S. Kang, “Effects of crystal size and surface coverage of perovskites on electron recombination in solar cells,” Mater. Lett., vol. 242, pp. 191–194, 2019.
  • [22] S. Wang et al., “Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method,” J. Mater. Chem. A, vol. 3, no. 28, pp. 14631–14641, 2015.
  • [23] Chaminda Hettiarachchi, Nicholas Valdes, Pritish Mukherjee, and Sarath Witanachchi, “A Novel Single-Step Growth Process for the Deposition of CH3NH3PbI3-xClx Perovskite Films from CH3NH3Cl and PbI2 Precursors,” J. Mater. Sci. Eng. A, vol. 6, no. 5, pp. 233–242, 2016.
  • [24] Y. Li et al., “High-Performance Planar Solar Cells Based on CH3NH3PbI3-xClx Perovskites with Determined Chlorine Mole Fraction,” Adv. Funct. Mater., vol. 25, no. 30, pp. 4867–4873, 2015.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Salih Akyürekli 0000-0001-6005-667X

Murat Kaleli 0000-0002-3290-2020

Murat Koç 0000-0002-1048-6150

Durmuş Ali Aldemir 0000-0003-4819-840X

Project Number FDK-2018-6816
Publication Date November 29, 2020
Published in Issue Year 2020

Cite

IEEE S. Akyürekli, M. Kaleli, M. Koç, and D. A. Aldemir, “Ultrasonik Sprey Piroliz Yöntemi ile Üretilen Güneş Soğurucu CH3NH3PbI3-xClx Perovskit Yapısının Optik, Morfolojik ve Yapısal Özelliklerinin İncelenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 2, pp. 253–263, 2020, doi: 10.29233/sdufeffd.811095.