Research Article
BibTex RIS Cite

Investigation of Level Density Models Effects on 206,207Pb(p,xn) Reaction Cross Sections

Year 2021, , 157 - 168, 27.05.2021
https://doi.org/10.29233/sdufeffd.901160

Abstract

In this study 206Pb(p,2n)205Bi, 206Pb(p,3n)204Bi, 206Pb(p,5n)202Bi, 207Pb(p,2n)206Bi and 207Pb(p,3n)205Bi reaction cross sections have been calculated with TALYS 1.95 code. Geometry Dependent Hybrid Model has been implemented on TALYS 1.95 code and it has selected as pre-equilibrium model. Constant Temperature Fermi Gas Model (CTFGM), Back Shifted Fermi Gas Model (BSFGM) and Generalised Super Fluid Model (GSM) have been used for level density model. Obtained results have been compared with the experimental data taken from literature. BSFGM and GSM results have been normalized to CTFGM to investigate level density model effects on reaction cross section calculations. Consequently it has been found that, level density models have an effect of 40% on the cross section calculations investigated in this study.

References

  • [1] H. Holub, E. Caplar, and N. Cindro, “A consistent study of precompound and compound–nucleus emission mechanisms in neutron–induced reactions,” Z. Phys. A., 296, 341–357, 1980.
  • [2] H. Gruppelaar, P. Nagel, and P. E. Hodgson, “Pre-equilibrium processes in nuclear reaction theory: the state of the Art and Beyond,” Riv. Nuovo Cimento, 9, 1-46, 1986.
  • [3] A. Koning, S. Hilaire, and S. Goriely, TALYS 1.95 Nuclear Research and Consultancy Group (NRG), The Netherlands, 2019.
  • [4] C. Kalbach, “Two-component exciton model: Basic formalism away from shell closures,” Phys. Rev. C., 33, 818-833, 1986.
  • [5] M. Blann, “Hybrid model for pre-equilibrium decay in nuclear reactions,” Phys. Rev. Lett., 27, 337-340, 1971.
  • [6] A. Y. Konobeyev, U. Fischer, A. J. Koning, P. E. Pereslavtsev, and M. Blann, “Implementation of the Geometry Dependent Hybrid Model in TALYS,” J. Korean Phys. Soc., 59, 935-938, 2011.
  • [7] H. A. Bethe, “Theoretical reviews of modern physics,” Nucl. Phys. B., 9, 69-244, 1937.
  • [8] A. Gilbert and A. G. W. Cameron, “A composite nuclear level density formula with shell corrections,” Can. J. Phys., 43, 1446-1496, 1965.
  • [9] H. Baba, “A shell-model nuclear level density,” Nucl. Phys., 159, 625–641, 1970.
  • [10] A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, “Phenomenological description of the energy dependence of the level density parameter,” Sov. J. Nucl. Phys., 21, 485-490 1975.
  • [11] H. Özdoğan, M. Şekerci, İ. H. Sarpün, and A. Kaplan, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isot., 140, 29-34, 2018.
  • [12] H. Özdoğan, Y. A. Üncü, M. Şekerci, and A. Kaplan, “Estimations of level density parameters by using artificial neural network for phenomenological level density models,” Appl. Radiat. Isot., 169, 109583, 2021.
  • [13] O. Karaman, H. Özdoğan, Y. A. Üncü, C. Karaman, and A. G. Tanır, “Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC,” Kerntechnik, 85, 401–407, 2020.
  • [14] M. Şekerci, H. Özdoğan, and A. Kaplan, “Level density model effects on the production cross section calculations of some medical isotopes via (α, xn) reactions where x= 1 3,” Mod. Phys. Lett. A, 35, 2050202, 2020.
  • [15] H. Özdoğan, Y. A. Üncü, O. Karaman, M. Şekerci, and A. Kaplan, “Estimations of giant dipole resonance parameters using artificial neural network,” Appl. Radiat. Isotopes, 169, 109581, 2021.
  • [16] H. Özdoğan, İ. H. Sarpün, M. Şekerci, and A. Kaplan, “Production cross-section calculations of 111In via proton and alpha-induced nuclear reactions,” Mod. Phys. Lett. A, 36 (8), 2150051, 2021.
  • [17] H. Özdoğan, M. Şekerci, and A. Kaplan, “An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(a,x) reaction,” Phys. Atom. Nuclei., 83, 820-827, 2020.
  • [18] M. Şekerci, H. Özdoğan, and A. Kaplan, “Astrophysical s-factor calculations under the effects of gamma-ray strength functions for some alpha capture reactions,” Mosc. Univ. Phys. Bull., 75, 585-589, 2020.
  • [19] H. Özdoğan, M. Şekerci, and A. Kaplan, “Photo-neutron cross-section calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with newly obtained giant dipole resonance parameters,” Appl. Radiat. Isotopes, 165, 109356, 2020.
  • [20] M. Şekerci, “An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions,” Radiochim. Acta, 108 (6), 459-467, 2020.
  • [21] M. Şekerci, “Theoretical cross-section calculations for the (a, n) and (a, 2n) reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes,” Mosc. Univ. Phys. Bull., 75, 123–132, 2020.
  • [22] M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,g) reactions,” Radiochim. Acta, 108 (1), 11-17, 2020.
  • [23] H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Appl. Radiat. Isotopes, 143, 6-10, 2019.
  • [24] H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi-empirical formula for the (a,p) reaction cross-section at 19±1 MeV,” Mod. Phys. Lett. A, 34 (6), 1950044, 2019.
  • [25] M. Şekerci. H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Mosc. Univ. Phys. Bull., 74, 277-281, 2019.
  • [26] H. Özdoğan, M. Şekerci, and A. Kaplan, “S-Factor Analysis of Proton Capture Reactions on 112,114,116,119Sn and 113,115In Isotopes,” Phys. Atom. Nuclei, 82, 324-329, 2019.
  • [27] A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Photon induced reaction cross-section calculations of several structural fusion materials,” J. Fusion Energ., 36 (6), 213–217, 2017.
  • [28] A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Computations of (a,xn) reaction cross-section for 107,109Ag coated materials with possible application in accelerators and nuclear systems,” J. Fusion Energ., 35 (4), 715–723, 2016.
  • [29] M. Şekerci, H. Özdoğan, and A. Kaplan, “75-77Br radyoizotoplarının üretim tesir kesiti hesaplamalarında bazı seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 719-729, 2020.
  • [30] M. Şekerci, “Gamma kuvvet fonksiyonlarının bazı samaryum izotoplarının (g,n) ve (g,2n) reaksiyonlarının tesir kesiti hesaplamaları üzerindeki etkileri,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 643-654, 2020.
  • [31] A. Kaplan, M. Şekerci, H. Özdoğan, and B. Demir, “A study on the calculations of cross-sections for 66,67Ga and 75Se radionuclides production reactions via 3He particles,” ESTUJST-A, 21 (4), 554-561, 2020.
  • [32] M. Şekerci, H. Özdoğan, and A. Kaplan, “Charged particle penetration distance and mass stopping power calculations on some nuclear reactor control rod materials,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2), 1103-1115, 2019.
  • [33] M. Şekerci, “Bazı medikal radyoizotopların (a,xn) reaksiyonlarıyla üretim tesir kesiti hesaplamalarında seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4), 2035-2047, 2019.
  • [34] H. Özdoğan, M. Şekerci, and A. Kaplan, “Füzyon reaktörü yapısal malzemelerinde kullanılan bazı elementler için proton girişli reaksiyonlarda 3He yayınlanma spektrumlarının incelenmesi,” SDÜFEFFD, 13 (1), 12-18, 2018.
  • [35] M. Şekerci and A. Kaplan, “151,153Eu izotoplarında (p,n) ve (p,3n) reaksiyonları için tesir kesiti hesaplamaları ve seviye yoğunluğu modellerinin incelenmesi,” SDÜFEFFD, 13(2), 132-143, 2018.
  • [36] A. Nikjou, M. Sadeghi, M. Sharifian, and R. Baghbani, “Nuclear model calculations on the production of auger electron emitter 111In: As a theranostic radionuclide,” Appl. Radiat. Isotopes, 166, 109354, 2020.
  • [37] A. Jafari, M. R. Aboudzadeh, M. Sharifian, M. Sadeghi, A. Rahiminezhad, B. Alirezapour, and S. Rajabifar, “Cyclotron-based production of the theranostic radionuclide scandium-47 from titanium target,” Nucl. Instrum. Meth. A., 961, 163643, 2020.
  • [38] A. Nikjou and M. Sadeghi, “Overview and evaluation of different nuclear level density models for the 123I radionuclide production”, Appl. Radiat. Isotopes, 136, 45-58, 2018.
  • [39] M. Sadeghi, T. Kakavand, L. Mokhtari, and Z. Gholamzadeh, “Determination of 68Ga production parameters by different reactions using ALICE and TALYS codes,” Pramana - J Phys, 72, 335–341 2009.
  • [40] P.V. Cuong, T.D. Thiep, L.T. Anh, T.T. An, B.M. Hue, K.T. Thanh, N.H. Tan, N.T. Vinh, and T.T. Anh, “Theoretical calculation by Talys code in combination with Geant4 simulation for consideration of γ,n reactions of Eu isotopes in the giant dipole resonance region,” Nucl. Instrum. Meth. A., 479, 68-73, 2020.
  • [41] M. Yiğit, “Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas”, Nucl. Eng., 52, 791-796, 2020.
  • [42] Ö. Sönmez and O. Karaman, “Investigation of level density parameter dependence for some 233U, 235U, 237U, 239U, 249Cf, 251Cf, 237Pu and 247Cm nuclei in neutron fission cross sections with the incident energy up to 20 MeV,” Kerntechnik, 86, 78-85, 2021.
  • [43] R. Santra, B. Dey, S. Roy, Md.S.R. Laskar, R. Palit, H. Pai, S. Rajbanshi, S. Ali, S. Bhattacharjee, F.S. Babra, A. Mukherjee, S. Jadhav, B. S. Naidu, A. T. Vazhappilly, and S. Pal, “Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section,” Phys. Lett., 806, 145487, 2020.
  • [44] B. Canbula, “55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi,” SDÜ Fen Bil. Enst. Der., 24, 138-142, 2020.
  • [45] B. Canbula, “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi,” Celal Bayar University Journal of Science, 13, 445-455, 2017.
  • [46] C. Yalçın, “İnce katman aktivasyon yöntemi için 48Ti(α,n)51Cr reaksiyon tesir kesiti hesabı,”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 432-439, 2017.
  • [47] D. Canbula, “Cross section analysis of proton-induced nuclear reactions of thorium,” Nucl. Instrum. Meth. A, 478, 229-232, 2020.
  • [48] J. Luo and L. Jiang, “Activation cross-sections for the 185Re(n, 2n) reaction and the isomeric cross-section ratio of 184m,gRe in the neutron energy range of 13–15 MeV,” Eur. Phys. J., A 55, 27, 1019.
  • [49] C. Deptula, V. A. Khalkin, N. G. Zaitseva, N.G., K. S. Han, O. Knotek, V. A. Konov, L. M. Popinenkova, P. Mikecz, and E. Rurarz, “Excitation functions and yield for medically important generators 82Sr → 82Rb, 123Xe → 123I and 201Bi → 201Pb → 201Tl obtained with 100 MeV protons,” Nukleonika, 35, 3-47, 1990.
  • [50] R. E. Bell and H. M. Skarsgard, “Cross Sections of (p,xn) Reactions in the isotope of lead and bismuth,” Can. J. Phys., 34 (8), 745-766, 1956.

206,207Pb(p,xn) Reaksiyonu Tesir Kesiti Hesaplamalarına Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi

Year 2021, , 157 - 168, 27.05.2021
https://doi.org/10.29233/sdufeffd.901160

Abstract

Bu çalışmada 206Pb(p,2n)205Bi, 206Pb(p,3n)204Bi, 206Pb(p,5n)202Bi, 207Pb(p,2n)206Bi ve 207Pb(p,3n)205Bi reaksiyon tesir kesitleri TALYS 1.95 kodu ile hesaplanmıştır. Hesaplamalar için Geometri Bağımlı Hibrit Model TALYS 1.95 içerisine gömülmüş ve denge-öncesi model olarak kullanılmıştır. Sabit Sıcaklık Fermi Gaz Model (Constant Temperature Fermi Gas Model-CTFGM), Geri Kaydırmalı Fermi Gaz Model (Back Shifted Fermi Gas Model-BSFGM) ve Genelleştirilmiş Süper Akışkan Modelleri (Generalised Super Fluid Model-GSM) seviye yoğunluğu modelleri olarak seçilmiştir. Hesaplanan tesir kesitleri literatürden alınan deneysel verilerle karşılaştırılmıştır. Seviye yoğunluğu modellerinin reaksiyon tesir kesiti hesaplamaları üzerine etkisini araştırmak için, BSFGM ve GSM tesir kesiti hesaplamaları, CTFGM hesaplamalarına normalize edilmiştir. Sonuç olarak; seviye yoğunluğu modellerinin bu çalışmada incelenen tesir kesiti hesaplamaları üzerinde %40 oranında etkili olduğu bulunmuştur.

References

  • [1] H. Holub, E. Caplar, and N. Cindro, “A consistent study of precompound and compound–nucleus emission mechanisms in neutron–induced reactions,” Z. Phys. A., 296, 341–357, 1980.
  • [2] H. Gruppelaar, P. Nagel, and P. E. Hodgson, “Pre-equilibrium processes in nuclear reaction theory: the state of the Art and Beyond,” Riv. Nuovo Cimento, 9, 1-46, 1986.
  • [3] A. Koning, S. Hilaire, and S. Goriely, TALYS 1.95 Nuclear Research and Consultancy Group (NRG), The Netherlands, 2019.
  • [4] C. Kalbach, “Two-component exciton model: Basic formalism away from shell closures,” Phys. Rev. C., 33, 818-833, 1986.
  • [5] M. Blann, “Hybrid model for pre-equilibrium decay in nuclear reactions,” Phys. Rev. Lett., 27, 337-340, 1971.
  • [6] A. Y. Konobeyev, U. Fischer, A. J. Koning, P. E. Pereslavtsev, and M. Blann, “Implementation of the Geometry Dependent Hybrid Model in TALYS,” J. Korean Phys. Soc., 59, 935-938, 2011.
  • [7] H. A. Bethe, “Theoretical reviews of modern physics,” Nucl. Phys. B., 9, 69-244, 1937.
  • [8] A. Gilbert and A. G. W. Cameron, “A composite nuclear level density formula with shell corrections,” Can. J. Phys., 43, 1446-1496, 1965.
  • [9] H. Baba, “A shell-model nuclear level density,” Nucl. Phys., 159, 625–641, 1970.
  • [10] A. V. Ignatyuk, G. N. Smirenkin, and A. S. Tishin, “Phenomenological description of the energy dependence of the level density parameter,” Sov. J. Nucl. Phys., 21, 485-490 1975.
  • [11] H. Özdoğan, M. Şekerci, İ. H. Sarpün, and A. Kaplan, “Investigation of level density parameter effects on (p,n) and (p,2n) reaction cross–sections for the fusion structural materials 48Ti, 63Cu and 90Zr,” Appl. Radiat. Isot., 140, 29-34, 2018.
  • [12] H. Özdoğan, Y. A. Üncü, M. Şekerci, and A. Kaplan, “Estimations of level density parameters by using artificial neural network for phenomenological level density models,” Appl. Radiat. Isot., 169, 109583, 2021.
  • [13] O. Karaman, H. Özdoğan, Y. A. Üncü, C. Karaman, and A. G. Tanır, “Investigation of the effects of different composite materials on neutron contamination caused by medical LINAC,” Kerntechnik, 85, 401–407, 2020.
  • [14] M. Şekerci, H. Özdoğan, and A. Kaplan, “Level density model effects on the production cross section calculations of some medical isotopes via (α, xn) reactions where x= 1 3,” Mod. Phys. Lett. A, 35, 2050202, 2020.
  • [15] H. Özdoğan, Y. A. Üncü, O. Karaman, M. Şekerci, and A. Kaplan, “Estimations of giant dipole resonance parameters using artificial neural network,” Appl. Radiat. Isotopes, 169, 109581, 2021.
  • [16] H. Özdoğan, İ. H. Sarpün, M. Şekerci, and A. Kaplan, “Production cross-section calculations of 111In via proton and alpha-induced nuclear reactions,” Mod. Phys. Lett. A, 36 (8), 2150051, 2021.
  • [17] H. Özdoğan, M. Şekerci, and A. Kaplan, “An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(a,x) reaction,” Phys. Atom. Nuclei., 83, 820-827, 2020.
  • [18] M. Şekerci, H. Özdoğan, and A. Kaplan, “Astrophysical s-factor calculations under the effects of gamma-ray strength functions for some alpha capture reactions,” Mosc. Univ. Phys. Bull., 75, 585-589, 2020.
  • [19] H. Özdoğan, M. Şekerci, and A. Kaplan, “Photo-neutron cross-section calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with newly obtained giant dipole resonance parameters,” Appl. Radiat. Isotopes, 165, 109356, 2020.
  • [20] M. Şekerci, “An investigation of the effects of level density models and alpha optical model potentials on the cross-section calculations for the production of the radionuclides 62Cu, 67Ga, 86Y and 89Zr via some alpha induced reactions,” Radiochim. Acta, 108 (6), 459-467, 2020.
  • [21] M. Şekerci, “Theoretical cross-section calculations for the (a, n) and (a, 2n) reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes,” Mosc. Univ. Phys. Bull., 75, 123–132, 2020.
  • [22] M. Şekerci, H. Özdoğan, and A. Kaplan, “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,g) reactions,” Radiochim. Acta, 108 (1), 11-17, 2020.
  • [23] H. Özdoğan, M. Şekerci, and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon induced reaction cross–section calculations for the fusion structural materials 46,50Ti, 51V, 58Ni and 63Cu,” Appl. Radiat. Isotopes, 143, 6-10, 2019.
  • [24] H. Özdoğan, M. Şekerci, and A. Kaplan, “A new developed semi-empirical formula for the (a,p) reaction cross-section at 19±1 MeV,” Mod. Phys. Lett. A, 34 (6), 1950044, 2019.
  • [25] M. Şekerci. H. Özdoğan, and A. Kaplan, “Investigation on the different production routes of 67Ga radioisotope by using different level density models,” Mosc. Univ. Phys. Bull., 74, 277-281, 2019.
  • [26] H. Özdoğan, M. Şekerci, and A. Kaplan, “S-Factor Analysis of Proton Capture Reactions on 112,114,116,119Sn and 113,115In Isotopes,” Phys. Atom. Nuclei, 82, 324-329, 2019.
  • [27] A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Photon induced reaction cross-section calculations of several structural fusion materials,” J. Fusion Energ., 36 (6), 213–217, 2017.
  • [28] A. Kaplan, M. Şekerci, V. Çapalı, and H. Özdoğan, “Computations of (a,xn) reaction cross-section for 107,109Ag coated materials with possible application in accelerators and nuclear systems,” J. Fusion Energ., 35 (4), 715–723, 2016.
  • [29] M. Şekerci, H. Özdoğan, and A. Kaplan, “75-77Br radyoizotoplarının üretim tesir kesiti hesaplamalarında bazı seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 719-729, 2020.
  • [30] M. Şekerci, “Gamma kuvvet fonksiyonlarının bazı samaryum izotoplarının (g,n) ve (g,2n) reaksiyonlarının tesir kesiti hesaplamaları üzerindeki etkileri,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (2), 643-654, 2020.
  • [31] A. Kaplan, M. Şekerci, H. Özdoğan, and B. Demir, “A study on the calculations of cross-sections for 66,67Ga and 75Se radionuclides production reactions via 3He particles,” ESTUJST-A, 21 (4), 554-561, 2020.
  • [32] M. Şekerci, H. Özdoğan, and A. Kaplan, “Charged particle penetration distance and mass stopping power calculations on some nuclear reactor control rod materials,” Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12 (2), 1103-1115, 2019.
  • [33] M. Şekerci, “Bazı medikal radyoizotopların (a,xn) reaksiyonlarıyla üretim tesir kesiti hesaplamalarında seviye yoğunluğu modellerinin etkilerinin incelenmesi,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4), 2035-2047, 2019.
  • [34] H. Özdoğan, M. Şekerci, and A. Kaplan, “Füzyon reaktörü yapısal malzemelerinde kullanılan bazı elementler için proton girişli reaksiyonlarda 3He yayınlanma spektrumlarının incelenmesi,” SDÜFEFFD, 13 (1), 12-18, 2018.
  • [35] M. Şekerci and A. Kaplan, “151,153Eu izotoplarında (p,n) ve (p,3n) reaksiyonları için tesir kesiti hesaplamaları ve seviye yoğunluğu modellerinin incelenmesi,” SDÜFEFFD, 13(2), 132-143, 2018.
  • [36] A. Nikjou, M. Sadeghi, M. Sharifian, and R. Baghbani, “Nuclear model calculations on the production of auger electron emitter 111In: As a theranostic radionuclide,” Appl. Radiat. Isotopes, 166, 109354, 2020.
  • [37] A. Jafari, M. R. Aboudzadeh, M. Sharifian, M. Sadeghi, A. Rahiminezhad, B. Alirezapour, and S. Rajabifar, “Cyclotron-based production of the theranostic radionuclide scandium-47 from titanium target,” Nucl. Instrum. Meth. A., 961, 163643, 2020.
  • [38] A. Nikjou and M. Sadeghi, “Overview and evaluation of different nuclear level density models for the 123I radionuclide production”, Appl. Radiat. Isotopes, 136, 45-58, 2018.
  • [39] M. Sadeghi, T. Kakavand, L. Mokhtari, and Z. Gholamzadeh, “Determination of 68Ga production parameters by different reactions using ALICE and TALYS codes,” Pramana - J Phys, 72, 335–341 2009.
  • [40] P.V. Cuong, T.D. Thiep, L.T. Anh, T.T. An, B.M. Hue, K.T. Thanh, N.H. Tan, N.T. Vinh, and T.T. Anh, “Theoretical calculation by Talys code in combination with Geant4 simulation for consideration of γ,n reactions of Eu isotopes in the giant dipole resonance region,” Nucl. Instrum. Meth. A., 479, 68-73, 2020.
  • [41] M. Yiğit, “Study on (n,p) reactions of 58,60,61,62,64Ni using new developed empirical formulas”, Nucl. Eng., 52, 791-796, 2020.
  • [42] Ö. Sönmez and O. Karaman, “Investigation of level density parameter dependence for some 233U, 235U, 237U, 239U, 249Cf, 251Cf, 237Pu and 247Cm nuclei in neutron fission cross sections with the incident energy up to 20 MeV,” Kerntechnik, 86, 78-85, 2021.
  • [43] R. Santra, B. Dey, S. Roy, Md.S.R. Laskar, R. Palit, H. Pai, S. Rajbanshi, S. Ali, S. Bhattacharjee, F.S. Babra, A. Mukherjee, S. Jadhav, B. S. Naidu, A. T. Vazhappilly, and S. Pal, “Nuclear level density of 69Zn from gamma gated particle spectrum and its implication on 68Zn(n, γ)69Zn capture cross section,” Phys. Lett., 806, 145487, 2020.
  • [44] B. Canbula, “55Mn İzotopunun fotonükleer tesir kesitleri üzerinde kollektif nükleer seviye yoğunluğunun etkisi,” SDÜ Fen Bil. Enst. Der., 24, 138-142, 2020.
  • [45] B. Canbula, “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi,” Celal Bayar University Journal of Science, 13, 445-455, 2017.
  • [46] C. Yalçın, “İnce katman aktivasyon yöntemi için 48Ti(α,n)51Cr reaksiyon tesir kesiti hesabı,”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17, 432-439, 2017.
  • [47] D. Canbula, “Cross section analysis of proton-induced nuclear reactions of thorium,” Nucl. Instrum. Meth. A, 478, 229-232, 2020.
  • [48] J. Luo and L. Jiang, “Activation cross-sections for the 185Re(n, 2n) reaction and the isomeric cross-section ratio of 184m,gRe in the neutron energy range of 13–15 MeV,” Eur. Phys. J., A 55, 27, 1019.
  • [49] C. Deptula, V. A. Khalkin, N. G. Zaitseva, N.G., K. S. Han, O. Knotek, V. A. Konov, L. M. Popinenkova, P. Mikecz, and E. Rurarz, “Excitation functions and yield for medically important generators 82Sr → 82Rb, 123Xe → 123I and 201Bi → 201Pb → 201Tl obtained with 100 MeV protons,” Nukleonika, 35, 3-47, 1990.
  • [50] R. E. Bell and H. M. Skarsgard, “Cross Sections of (p,xn) Reactions in the isotope of lead and bismuth,” Can. J. Phys., 34 (8), 745-766, 1956.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Hasan Özdoğan 0000-0001-6127-9680

Publication Date May 27, 2021
Published in Issue Year 2021

Cite

IEEE H. Özdoğan, “206,207Pb(p,xn) Reaksiyonu Tesir Kesiti Hesaplamalarına Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 1, pp. 157–168, 2021, doi: 10.29233/sdufeffd.901160.