Özet: Bu çalışmada, diferensiyellenebilir bir manifold üzerindeki bir semi-Riemann metriğin ikinci mertebeden tam yüseltilmesi ile elde edilen nin bir semi-Riemann metriği olduğu gösterildi ve bu metriğin Levi-Civita koneksiyonu bileşenler cinsinden hesaplandı.
Anahtar Kelimeler: Semi-Riemann metrik, Double tanjant demet, Levi-Civita koneksiyonu, Lie Parantez operatörü
THE DIFFERENTIAL GEOMETRY OF DOUBLE TANGENT BUNDLE WITH SEMI-RIEMANNIAN METRIC
Abstract: In this paper, it is shown that , which is obtained in term of the second order the complete lift of a semi-Riemannian metric on a differentiable manifold, is a semi-Riemannian metric and it is calculated the connection coefficients of the Levi-Civita connection of the this metric.
Keywords: Semi-Riemannian metric, The double tangent bundle, Levi-Civita connection, Lie bracket operator
Mathematics Subject Clasifications (2000): 53C07, 53C50
Primary Language | Turkish |
---|---|
Journal Section | Makaleler |
Authors | |
Publication Date | December 1, 2007 |
Published in Issue | Year 2007 Volume: 2 Issue: 2 |