Research Article
BibTex RIS Cite

Matris Metoduyla Jacobsthal Sayılar Üzerine

Year 2012, Volume: 7 Issue: 1, 69 - 76, 04.06.2012

Abstract

Özet: Bu çalışmada, alışılmış Jacobsthal sayılarını göz önüne aldık. Jacobsthal sayıları ve bu çalışmada ilk kez tanıtılan matrisler arasındaki özdeşlikleri inceledik. Birde yeni bir karmaşık toplam formülü sunduk.

Anahtar kelimeler: Jacobsthal sayı, matris, permanent

References

  • Vajda S., 1989. Fibonacci and Lucas Numbers and the Golden Section. Chichester, Brisbane, Toronto, New York, USA.
  • Horadam A.F., 1996. Jacobsthal Representation Numbers. Fibonacci Quarterly. 34, 40–54.
  • Horadam A.F., 1997. Jacobsthal Representation Polynomials. Fibonacci Quarterly. 35, 137–148.
  • Djordjevid G.B., 2000. Derivative Sequences of Generalized Jacobsthal and Jacobsthal-Lucas Polynomials. Fibonacci Quarterly, 38, 334-338.
  • Koshy T., 2001. Fibonacci and Lucas Numbers with applications. Pure and Applied Mathematics, Wiley-Interscience, New York, USA.
  • Djordjevid G.B., Srivastava H.M., 2005. Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers. Mathematical and Computer Modelling, 42, 1049-1056.
  • Cerin Z., 2007. Sums of Squares and Products of Jacobsthal Numbers. Journal of Integer Sequence, 10, Art 07.2.5.
  • Koken F., Bozkurt D., 2008. On the Jacobsthal numbers by matrix methods. International Journal of Contemporary Mathematical Sicences 3(13), 605-614.
  • Koken F., Bozkurt D., 2008. On the Jacobsthal-Lucas numbers by matrix methods. International Journal of Contemporary Mathematical Sicences 3(13), 1629-1633.
  • Köken F., 2008. Jacobsthal Ve Jacobsthal-Lucas Sayılarının Özellikleri Ve Uygulamaları. Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Djordjevid G.B., 2009. Generalized Jacobsthal Polynomials. Fibonacci Quarterly, 38, 239-243.

On The Jacobsthal Numbers By Matrix Method

Year 2012, Volume: 7 Issue: 1, 69 - 76, 04.06.2012

Abstract

Abstract: In this paper we consider the usual Jacobsthal numbers. We
investigate the identities between the Jacobsthal numbers and matrices,
which are introduced for the first time in this paper. We also present a
new complex sum formula.

References

  • Vajda S., 1989. Fibonacci and Lucas Numbers and the Golden Section. Chichester, Brisbane, Toronto, New York, USA.
  • Horadam A.F., 1996. Jacobsthal Representation Numbers. Fibonacci Quarterly. 34, 40–54.
  • Horadam A.F., 1997. Jacobsthal Representation Polynomials. Fibonacci Quarterly. 35, 137–148.
  • Djordjevid G.B., 2000. Derivative Sequences of Generalized Jacobsthal and Jacobsthal-Lucas Polynomials. Fibonacci Quarterly, 38, 334-338.
  • Koshy T., 2001. Fibonacci and Lucas Numbers with applications. Pure and Applied Mathematics, Wiley-Interscience, New York, USA.
  • Djordjevid G.B., Srivastava H.M., 2005. Incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers. Mathematical and Computer Modelling, 42, 1049-1056.
  • Cerin Z., 2007. Sums of Squares and Products of Jacobsthal Numbers. Journal of Integer Sequence, 10, Art 07.2.5.
  • Koken F., Bozkurt D., 2008. On the Jacobsthal numbers by matrix methods. International Journal of Contemporary Mathematical Sicences 3(13), 605-614.
  • Koken F., Bozkurt D., 2008. On the Jacobsthal-Lucas numbers by matrix methods. International Journal of Contemporary Mathematical Sicences 3(13), 1629-1633.
  • Köken F., 2008. Jacobsthal Ve Jacobsthal-Lucas Sayılarının Özellikleri Ve Uygulamaları. Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Djordjevid G.B., 2009. Generalized Jacobsthal Polynomials. Fibonacci Quarterly, 38, 239-243.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Makaleler
Authors

Ahmet Daşdemir

Publication Date June 4, 2012
Published in Issue Year 2012 Volume: 7 Issue: 1

Cite

IEEE A. Daşdemir, “On The Jacobsthal Numbers By Matrix Method”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 7, no. 1, pp. 69–76, 2012.