Research Article
BibTex RIS Cite

-

Year 2014, Volume: 9 Issue: 1, 117 - 124, 15.07.2014

Abstract


Determination by FLUKA Monte Carlo Code of Shield Thicknesses of
Concrete and Soil for 100-250 MeV Proton Accelerators

Abstract: Shielding of proton accelerators mainly is made the
attenuation of the secondary neutrons generated in the hadronic cascade.
Neutrons mainly result from the intranuclear cascades and subsequent
evaporation reactions. Whereas intranuclear cascades create high-energy
neutrons, evaporation reactions produce copious neutrons that lower
energies. In total, these neutrons dictate the shielding requirements of
a proton accelerator. For shielding design purposes, several advanced
multi-particle Monte Carlo transport codes are available.

In this paper, standard concrete and soil shield materials were chosen
to determine the minimum required shield thickness for shield design of
proton accelerator facility, which is planned to build of at Turkish
Accelerator Center (TAC). Required shield thicknesses of standard
concrete and soil were determined with FLUKA Monte Carlo code, for 100
and 250 MeV energy regions of facility for abnormal condition.

Key words: Proton accelerator, radiation protection, Monte Carlo code,
shield design

References

  • Agosteo, S., Magistris, M., Mereghetti, A., Silari, M., Zajacova, Z., 2007. Shielding Data for 100-250 MeV Proton Accelerators: Double Differential Neutron Distributions and Attenuation in Concrete, Nuclear Instruments and Methods in Physics Research Section B, 265: 581-598.
  • Agosteo, S., Fasso, A., Ferrari, A., Sala, P.R., Silari, M., Tabarelli de Fatis, P., 1996. Double Differential Distributions and Attenuation in Concrete for Neutrons Produced by 100-400 MeV Protons on Iron and Tissue Targets, Nuclear Instruments and Methods in Physics Research Section B, 114: 70-80.
  • Thomas, R. H., Casey, W. R., Cossairt, J. D., O’Brien, K., Rohring, N., Stapleton, G. B., Swanson, W. P., Slaback, L.A., 2005. Radiation Protection for Particle Accelerator Facilities, NCRP Report No. 144.
  • Agosteo, A., Rollet, S., Silari, M., Theis, C., 2008. Dosimetry in Radiation Fields Around High- Energy Proton Accelerators, Radiation Measurements, 43: 1024-1032.
  • Rokni, S.H., Cossairt, J. D., Liu, J. C., 2008. Radiation Shielding at High-Energy Electron and Proton Accelerators, SLAC-PUB-13033, FERMILAB-PUB-07-608-ESH. Accelerator-Driven System, CONTRACTN: FIKW-CT-2001-00179.
  • Cossairt, J.D., 2011. Radiation Physics for Personnel and Enviromental Protection, Fermilab Report TM-1834 Revision 11, Presented at sessions of The U.S Particle Accelerator School.
  • Ipe, N.E., 2010. PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities, PTCOG Report 1.
  • Biarrotte, J., Mueller, A.C., Carluec, B., 2004. PDS-XADS Preliminary Design Studies of an Experimental.
  • Andersson, S., 2010. Evaluation of the Radiation Protection at the new Radiotherapy treatment department at the University Hospital of Umea, MSc thesis, 30 hp, Engineering Physics-Medical Physicist, 300 hp.
  • Ene, D.,et al., 2011. Radiation Protection Studies for ESS Superconducting Linear Accelerator, Progress in Nuclear Science and Technology, 2: 382-388.
  • Ene, D., 2010. Radioprotection Studies for the ESS Superconducting Linear Accelerator Preliminary Estimates, ESS AD Technical Note ESS/AD/0003.
  • T.A.E.K. Radyasyon Güvenliği Yönetmeliği, 2000. İkinci kısım, ikinci bölüm, madde 10-b (RG- 24/3/2000-23999).
  • Moyer, B. J., 1962. Method of Calculation of the Shielding Enclosure for the Berkley Bevatron, on Proc. 1st. Int Conf. Shielding around High Energy Accelerators, Presses Universitaines de France, Paris, p. 65.
  • Stevenson, G., Kuei-Lin, L., Thomas, R.H., 1982. Determination of Transverse Shielding for Proton Accelerators Using the Moyer Model, Health Physics, 43: 13-29.
  • Tesch, K., 1985. A Simple Estimation of lateral Shielding for Proton Accelerators in the Energy Range from 50 to 1000 MeV, Radiation Protection Dosimetry, 1: 165-172.
  • Agosteo, S., Silari, M., 2001. Preliminary Shielding Calculations for a 2 GeV Superconducting Proton Linac, European Organisation for Nuclear Research European Laboratory Particle Physics, TECHNICAL MEMORANDUM TIS-RP/TM/2001-028, CERN NUFACT Note 088
  • Magistris, M., Silari, M., 2005. Shielding Requirements and Induced Radioactivity in the 3.5 GeV SPL, CERN.
  • Battistoni, G., et al., 2011. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics, Nuclear Instruments and Methods in Physics Research B, 269: 2850-2856.
  • Ferrari, A., et al., 2011. FLUKA: A Multi-Particle Transport Code, CERN-2005-010.
  • Magistris, M., et al., 2007. Radiation Protection Considerations for the Installation of Linac 4 in the Existing Linac 2 Building, CERN-SC-2007-031-RP-TN.
  • Sarıyer, D., Küçer, R., 2013. Proton Hızlandırıcılarında Farklı Maddeler İçin Zırh Kalınlıklarının Analitik Yöntemle Belirlenmesi, SDÜ Fen Dergisi (E-Journal), 8(1): 100-105.
  • Agosteo, S., Magistris, M., Silari, M., 2011. Shielding of Proton Accelerators, Radiation Protection Dosimetry, 146: 414-424.
  • Rahmi Küçer e-posta:rkucer@hotmail.com

100-250 MeV Enerjili Proton Hızlandırıcıları için Beton ve Toprak Zırh Kalınlıklarının FLUKA Monte Carlo Kodu ile Belirlenmesi

Year 2014, Volume: 9 Issue: 1, 117 - 124, 15.07.2014

Abstract

Özet: Proton hızlandırıcılarında zırh tasarımı temel olarak hadronik sağanak ile oluşan ikincil nötronlara göre yapılır. Nötronlar, çoğunlukla intranükleer sağanaklar ve sonrası oluşan buharlaşma reaksiyonlarından oluşur. İntranükleer sağanakta, yüksek enerjili nötronlar oluşurken, buharlaşma reaksiyonlarında daha düşük enerjili bol nötron oluşur. Toplamda bu nötronlar, proton hızlandırıcılarında zırh tasarım gerekliliklerini oluşturur. Zırh tasarım amaçları için, geliştirilmiş Monte Carlo çoklu parçacık taşınım kodları kullanılır.

Bu çalışmada Türk Hızlandırıcı Merkezi (THM) bünyesinde kurulması planlanan proton hızlandırıcı tesisinin zırh tasarımı için gerekli zırh kalınlıklarını belirlemek için standart beton ve toprak zırh maddesi seçildi. Tesisin 100 ve 250 MeV enerji bölgeleri için gerekli olan beton ve toprak zırh kalınlıkları, hızlandırıcının anormal çalışma durumu için FLUKA Monte Carlo kodu ile belirlendi.

Anahtar kelimeler: Proton hızlandırıcı, radyasyondan korunma, Monte Carlo kod, zırh tasarımı

References

  • Agosteo, S., Magistris, M., Mereghetti, A., Silari, M., Zajacova, Z., 2007. Shielding Data for 100-250 MeV Proton Accelerators: Double Differential Neutron Distributions and Attenuation in Concrete, Nuclear Instruments and Methods in Physics Research Section B, 265: 581-598.
  • Agosteo, S., Fasso, A., Ferrari, A., Sala, P.R., Silari, M., Tabarelli de Fatis, P., 1996. Double Differential Distributions and Attenuation in Concrete for Neutrons Produced by 100-400 MeV Protons on Iron and Tissue Targets, Nuclear Instruments and Methods in Physics Research Section B, 114: 70-80.
  • Thomas, R. H., Casey, W. R., Cossairt, J. D., O’Brien, K., Rohring, N., Stapleton, G. B., Swanson, W. P., Slaback, L.A., 2005. Radiation Protection for Particle Accelerator Facilities, NCRP Report No. 144.
  • Agosteo, A., Rollet, S., Silari, M., Theis, C., 2008. Dosimetry in Radiation Fields Around High- Energy Proton Accelerators, Radiation Measurements, 43: 1024-1032.
  • Rokni, S.H., Cossairt, J. D., Liu, J. C., 2008. Radiation Shielding at High-Energy Electron and Proton Accelerators, SLAC-PUB-13033, FERMILAB-PUB-07-608-ESH. Accelerator-Driven System, CONTRACTN: FIKW-CT-2001-00179.
  • Cossairt, J.D., 2011. Radiation Physics for Personnel and Enviromental Protection, Fermilab Report TM-1834 Revision 11, Presented at sessions of The U.S Particle Accelerator School.
  • Ipe, N.E., 2010. PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities, PTCOG Report 1.
  • Biarrotte, J., Mueller, A.C., Carluec, B., 2004. PDS-XADS Preliminary Design Studies of an Experimental.
  • Andersson, S., 2010. Evaluation of the Radiation Protection at the new Radiotherapy treatment department at the University Hospital of Umea, MSc thesis, 30 hp, Engineering Physics-Medical Physicist, 300 hp.
  • Ene, D.,et al., 2011. Radiation Protection Studies for ESS Superconducting Linear Accelerator, Progress in Nuclear Science and Technology, 2: 382-388.
  • Ene, D., 2010. Radioprotection Studies for the ESS Superconducting Linear Accelerator Preliminary Estimates, ESS AD Technical Note ESS/AD/0003.
  • T.A.E.K. Radyasyon Güvenliği Yönetmeliği, 2000. İkinci kısım, ikinci bölüm, madde 10-b (RG- 24/3/2000-23999).
  • Moyer, B. J., 1962. Method of Calculation of the Shielding Enclosure for the Berkley Bevatron, on Proc. 1st. Int Conf. Shielding around High Energy Accelerators, Presses Universitaines de France, Paris, p. 65.
  • Stevenson, G., Kuei-Lin, L., Thomas, R.H., 1982. Determination of Transverse Shielding for Proton Accelerators Using the Moyer Model, Health Physics, 43: 13-29.
  • Tesch, K., 1985. A Simple Estimation of lateral Shielding for Proton Accelerators in the Energy Range from 50 to 1000 MeV, Radiation Protection Dosimetry, 1: 165-172.
  • Agosteo, S., Silari, M., 2001. Preliminary Shielding Calculations for a 2 GeV Superconducting Proton Linac, European Organisation for Nuclear Research European Laboratory Particle Physics, TECHNICAL MEMORANDUM TIS-RP/TM/2001-028, CERN NUFACT Note 088
  • Magistris, M., Silari, M., 2005. Shielding Requirements and Induced Radioactivity in the 3.5 GeV SPL, CERN.
  • Battistoni, G., et al., 2011. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics, Nuclear Instruments and Methods in Physics Research B, 269: 2850-2856.
  • Ferrari, A., et al., 2011. FLUKA: A Multi-Particle Transport Code, CERN-2005-010.
  • Magistris, M., et al., 2007. Radiation Protection Considerations for the Installation of Linac 4 in the Existing Linac 2 Building, CERN-SC-2007-031-RP-TN.
  • Sarıyer, D., Küçer, R., 2013. Proton Hızlandırıcılarında Farklı Maddeler İçin Zırh Kalınlıklarının Analitik Yöntemle Belirlenmesi, SDÜ Fen Dergisi (E-Journal), 8(1): 100-105.
  • Agosteo, S., Magistris, M., Silari, M., 2011. Shielding of Proton Accelerators, Radiation Protection Dosimetry, 146: 414-424.
  • Rahmi Küçer e-posta:rkucer@hotmail.com
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Demet Sarıyer This is me

Rahmi Küçer This is me

Publication Date July 15, 2014
Published in Issue Year 2014 Volume: 9 Issue: 1

Cite

IEEE D. Sarıyer and R. Küçer, “100-250 MeV Enerjili Proton Hızlandırıcıları için Beton ve Toprak Zırh Kalınlıklarının FLUKA Monte Carlo Kodu ile Belirlenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 9, no. 1, pp. 117–124, 2014.