Research Article
BibTex RIS Cite

Dual Kuaterniyon İnvolüsyon Matrislerin Kinematiği

Year 2016, Volume: 11 Issue: 2, 121 - 132, 02.12.2016

Abstract

Lineer bir dönüşüm aynı zamanda self-inverse (tersi
kendisine eşit) ve anti-homomorfik ise involüsyon; self-inverse ve homomorfik
ise anti-involüsyondur. Üç-boyutlu Öklid uzayı
 teki vida
hareketleri dual-kuaterniyonlar ile elde edilen (anti)-involüsyon dönüşümleri
ile verilebilir. Biz bu çalışmada, dual-kuaterniyonları kullanarak ikisi
involüsyon dönüşüme diğer ikisi ise anti-involüsyon dönüşüme karşılık gelen
dört tane matrisi geometrik yorumlarıyla birlikte ele aldık.

References

  • T. A. Ell and S. J. Sangwine, Quaternion involutions and anti-involutions, Computers & Mathematics with Applications, 53 (2007), pp. 137-143.
  • W.R. Hamilton, On a new species of imaginary quantities connected with the theory of quaternions, Proceedings of the Royal Irish Academy 2 (1844), pp. 424–434.
  • J. B. Kuipers, Quaternions and Rotation Sequences, Published by Princenton University Press, New Jersey, 1999.
  • J. P. Ward, Quaternions and Cayley Algebrs and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • O. P. Agrawal, Hamilton Operatorsand Dualnumber-quaternions in Spatial Kinematic, Mech. Mach. Theory, 22 (1987), pp. 569-575.
  • E. Ata and Y. Yayli, Dual Unitary Matrices and Unit Dual Quaternions, Differential Geometry Dynamical Systems, 10 (2008), pp. 1-12.
  • M. Bekar and Y. Yayli, Dual Quaternion Involutions and Anti-Involutions, Advances in Applied Clifford Algebras 23 (2013) , pp. 577–592.
  • M. Hazewinkel (Ed.), Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet ‘Mathematical Encyclopaedia’, Kluwer, Dordrecht, 1988-1994.

Kinematics of Dual Quaternion Involution Matrices

Year 2016, Volume: 11 Issue: 2, 121 - 132, 02.12.2016

Abstract

Rigid-body (screw) motions in three-dimensional
Euclidean space
 can be represented by involution (resp.
anti-involution) mappings obtained by dual-quaternions which are self-inverse
and homomorphic (resp. anti-homomrphic) linear mappings. In this paper, we will
represent four dual-quaternion matrices with their geometrical meanings; two of
them correspond to involution mappings, while the other two correspond to
anti-involution mappings. 

References

  • T. A. Ell and S. J. Sangwine, Quaternion involutions and anti-involutions, Computers & Mathematics with Applications, 53 (2007), pp. 137-143.
  • W.R. Hamilton, On a new species of imaginary quantities connected with the theory of quaternions, Proceedings of the Royal Irish Academy 2 (1844), pp. 424–434.
  • J. B. Kuipers, Quaternions and Rotation Sequences, Published by Princenton University Press, New Jersey, 1999.
  • J. P. Ward, Quaternions and Cayley Algebrs and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • O. P. Agrawal, Hamilton Operatorsand Dualnumber-quaternions in Spatial Kinematic, Mech. Mach. Theory, 22 (1987), pp. 569-575.
  • E. Ata and Y. Yayli, Dual Unitary Matrices and Unit Dual Quaternions, Differential Geometry Dynamical Systems, 10 (2008), pp. 1-12.
  • M. Bekar and Y. Yayli, Dual Quaternion Involutions and Anti-Involutions, Advances in Applied Clifford Algebras 23 (2013) , pp. 577–592.
  • M. Hazewinkel (Ed.), Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet ‘Mathematical Encyclopaedia’, Kluwer, Dordrecht, 1988-1994.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Makaleler
Authors

Murat Bekar This is me

Yusuf Yaylı

Publication Date December 2, 2016
Published in Issue Year 2016 Volume: 11 Issue: 2

Cite

IEEE M. Bekar and Y. Yaylı, “Kinematics of Dual Quaternion Involution Matrices”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 11, no. 2, pp. 121–132, 2016.