Research Article
BibTex RIS Cite

The Effect of ZnO Coating Amount on The Efficiency of n-ZnO/p-Si Heterojunction Solar Cell

Year 2018, Volume: 13 Issue: 2, 154 - 163, 30.11.2018
https://doi.org/10.29233/sdufeffd.459518

Abstract

In this study, the effect of zinc oxide (ZnO) coating amount on the efficieny of n-type zinc
oxide/p-type silicon (n-ZnO/p-Si) heterojunction solar cell was investigated. ZnO nanoparticles were
synthesized by sol gel method. The synthesized nanoparticles were coated on glass substrates and p-Si
substrates using spin coating method. The coating process was carried out in different amounts as 2, 4,
5 and 15 times. After the coating process, the thin film coated substrates were placed in a square
furnace and annealed at 500 oC for 30 min. Structure characterization and surface morphology were
analyzed using X-ray diffraction (XRD) method and scanning electron microscopy (SEM). For each nZnO/p-Si
heterojunction solar cell structure, short circuit current (Isc) and open circuit voltage (Voc)
were determined by electrical measurements and efficiency (n) calculations were made. All processes
were performed at room temperature. According to this study, the efficiency of solar cells increases
with increasing the amount of ZnO coating up to a critical thickness and decreases when the critical
thickness is exceeded (due to the more ZnO coating). From this it was concluded that the amount of
ZnO coating (ZnO layer thickness) is an important parameter affecting the performance of solar cells.

References

  • D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, pp. 676-677, 1954.
  • T. Negami, Y. Hashimoto, and S. Nishiwaki, “Cu(In,Ga)Se2 thin-film solar cells with an efficiency of 18%,” Sol. Energ. Mat. Sol. C., vol. 67, pp. 331-335, 2001.
  • R. R. King, C. M. Fetzer, K. M. Edmondson, D. C. Law, P. C. Colter, H. L. Cotal, R. A. Sherif, H. Yoon, T. Isshiki, D. D. Krut, G. S. Kinsey, J. H. Ermer, S. Kurtz, T. Moriarty, J. Kiehl, K. Emery, W. K. Metzger, R. K. Ahrenkiel, N. H. Karam, “Metamorphic III-V materials, sublattice disorder, and multijunction solar cell approaches with over 37% efficiency,” Presented at the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 2004, pp. 7-11.
  • G. Michael, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem., vol 44(20), p. 6841-6851, 2005.
  • S. Wojtczuk, P. Chiu, X. Zhang, D. Derkacs, C. Harris, D. Pulver, M. Timmons, “InGaP/GaAs/InGaAs 41% Concentrator Cells Using Bi-Facial Epigrowth,” Photovoltaic Specialists Conference (PVSC), 35th IEEE, Honolulu HI., 2010, pp. 1259-1264.
  • B. Hussain, A. Ebong, I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energ. Mat. Sol. C., vol. 139, pp. 95–100, 2015.
  • D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, “Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%,” Nano Energy, vol. 23, pp. 138-144, 2016.
  • M. Dahlinger, K. Carstens, E. Hoffmann, R. Z. Gottwick, and J. H. Werner, “23.2% laser processed back contact solar cell: fabrication characterization and modeling,” Prog. Photovolt: Res. Appl., vol. 25, no. 2, pp. 192-200, 2017.
  • M. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, K. Akimoto, “CIGS solar cell with MBE-grown ZnS buffer layer,” Sol. Energ. Mat. Sol. C., vol. 93, no. 6-7, pp. 970-972, 2009.
  • S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett., vol. 74, pp. 729-731, 1999.
  • S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, and Y. M. Yang, “Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition,” Appl. Phys. Lett., vol. 90, pp. 143517–1-143517–3, 2007.
  • S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energ. Mat. Sol. C., vol. 90, no. 16, pp. 2710-2719, 2006.
  • R. B. H. Tahar, T. Ban, Y Ohya, Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys., vol. 83, no. 5, pp. 2631-2645, 1998.
  • M. G. Kim, M. G. Kanatzidis, A. Facchetti, T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater., vol. 10, pp. 382-388, 2011.
  • G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?,” Mater. Sci. Eng. B, vol. 139, no. 1, pp. 1-23, 2007.
  • V. Craciun, D. Craciun, X.Wang, T. J. Anderson, R. K. Singh, “Transparent and conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures,” J. Optoelectron. Adv. M., vol. 5, no. 2, pp. 401-408, 2003.
  • J. Mass, P. Bhattacharya, R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition,” Mater. Sci. Eng. B, vol. 103, pp. 9-15, 2003.
  • V. Musat, B. Teixeira, E. Fortunato, R. C. C. Monteiro, P. Vilarinho, “Al-doped ZnO thin films by sol–gel method,” Surf. Coat. Technol., vol. 180-181, pp. 659-662, 2004.
  • Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, L. S. Wen, “Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films,” J. App. Phys., vol. 90, no. 7, pp. 3432-3436, 2001.
  • F. D. Paraguay, M. M. Yoshida, J. Morales, J. Solis, W. L. Estrada, “Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour,” Thin Solid Films, vol. 373, no. 1-2, pp. 137-140, 2000.
  • K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, “ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications,” Thin Solid Films, vol. 431-432, pp. 369-372, 2003.
  • Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, C. J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett., vol. 88, 241108 – 1-241108–3, 2006.
  • Clean Energy Institute, “Physics of Solar Cells,” University of Washington, Seattle, WA, Available: http://photonicswiki.org/index.php?title=Physics_of_Solar_Cells.
  • P. Scherrer, “Bestimmung der GröBe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1918, pp. 98-100, 1918.
  • Z. Ahmad, M. H. Sayyad, “Electrical characteristics of a high rectification ratio organic Schottky diode based on methyl red,” Optoelectron. Adv. Mat.-Rapid Communications, vol. 3(5), pp. 509-512, 2009.
  • A. Ibrahim, A. Ashour, “ZnO/Si solar cell fabricated by spray pyrolysis technique,” J. Mater. Sci.: Mater. Electron., vol. 17, pp. 835-839, 2006.
  • T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki, N. Otogawa, T. Mise, S. Wang, Y. Hoshino, Y. Nakayama, H. Tanoue, and Y. Makita, “Studies on aluminum-doped ZnO films for transparent electrode and antireflection coating of h-FeSi2 optoelectronic devices,” Thin Solid Films, vol. 476, pp. 30-34, 2005.
  • N. F. Habubi, A. O. Mousa, and N. A. Nema, “Fabrication and Characterization of ZnO/p-Si Heterojunction Solar Cell,” World Scientific News, vol. 18, pp. 118-132, 2015.
  • D. Pogrebnyak, N. Y. Jamil, and A. K. M. Muhammed, “Simulation Study of n-ZnO/p-Si Heterojunction Solar Cell,” Nanosystems, Nanomaterials, Nanotechnologies, vol. 9, no. 4, pp. 819-830, 201.
  • H. Kobayashi, T. Ishida, Y. Nakato, and H. Mori, “Mechanism of carrier transport through a silicon-oxide layer for (indium-tin-oxide/silicon-oxide/silicon) solar cells,” J. Appl. Phys., vol. 78, pp. 3931-3939, 1995.

ZnO Kaplama Miktarının n-ZnO/p-Si Heteroeklem Güneş Hücresinin Verimliliğine Etkisi

Year 2018, Volume: 13 Issue: 2, 154 - 163, 30.11.2018
https://doi.org/10.29233/sdufeffd.459518

Abstract

Bu çalışmada, n-tipi çinko oksit/p-tipi silisyum (n-ZnO/p-Si) heteroeklem güneş
hücresinin verimliliği üzerinde çinko oksit (ZnO) kaplama miktarının etkisi incelendi. ZnO
nanoparçacıklar sol-jel yöntemi ile sentezlendi. Sentezlenen nanoparçacıklar, döndürerek
kaplama metodu kullanılarak cam alttaşlar ve p-Si alttaşlar üzerine kaplandı. Kaplama işlemi,
2, 4, 5 ve 15 kat olarak farklı miktarlarda gerçekleştirildi. Kaplama işleminden sonra, ince
film kaplı alttaşlar, kare bir fırın içerisine konuldu ve 500 oC de 30 dk tavlandı. Yapı
karakterizasyonu ve yüzey morfolojisi, X-ışını kırınımı metodu (X-ray diffraction; XRD) ve
taramalı elektron mikroskobu (scanning electron microscopy; SEM) kullanılarak analiz edildi.
Her bir n-ZnO/p-Si heteroeklem güneş hücresi yapısı için, kısa devre akımı (Isc) ve açık devre
voltajı (Voc) elektriksel ölçümler ile tespit edildi ve verimlilik (n) hesapları yapıldı. Tüm
işlemler oda sıcaklığında gerçekleştirildi. Yapılan bu çalışmaya göre, güneş hücrelerinin
verimi, kritik bir kalınlığa kadar, ZnO kaplama miktarının artışı ile artmakta, kritik kalınlık
aşıldığında (daha fazla ZnO kaplama yapıldığında) da düşmektedir. Buradan, ZnO kaplama
miktarının (ZnO tabaka kalınlığının) güneş hücrelerinin performansını etkileyen önemli bir
parametre olduğu sonucuna varıldı.

References

  • D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, pp. 676-677, 1954.
  • T. Negami, Y. Hashimoto, and S. Nishiwaki, “Cu(In,Ga)Se2 thin-film solar cells with an efficiency of 18%,” Sol. Energ. Mat. Sol. C., vol. 67, pp. 331-335, 2001.
  • R. R. King, C. M. Fetzer, K. M. Edmondson, D. C. Law, P. C. Colter, H. L. Cotal, R. A. Sherif, H. Yoon, T. Isshiki, D. D. Krut, G. S. Kinsey, J. H. Ermer, S. Kurtz, T. Moriarty, J. Kiehl, K. Emery, W. K. Metzger, R. K. Ahrenkiel, N. H. Karam, “Metamorphic III-V materials, sublattice disorder, and multijunction solar cell approaches with over 37% efficiency,” Presented at the 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 2004, pp. 7-11.
  • G. Michael, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem., vol 44(20), p. 6841-6851, 2005.
  • S. Wojtczuk, P. Chiu, X. Zhang, D. Derkacs, C. Harris, D. Pulver, M. Timmons, “InGaP/GaAs/InGaAs 41% Concentrator Cells Using Bi-Facial Epigrowth,” Photovoltaic Specialists Conference (PVSC), 35th IEEE, Honolulu HI., 2010, pp. 1259-1264.
  • B. Hussain, A. Ebong, I. Ferguson, “Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell,” Sol. Energ. Mat. Sol. C., vol. 139, pp. 95–100, 2015.
  • D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, “Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%,” Nano Energy, vol. 23, pp. 138-144, 2016.
  • M. Dahlinger, K. Carstens, E. Hoffmann, R. Z. Gottwick, and J. H. Werner, “23.2% laser processed back contact solar cell: fabrication characterization and modeling,” Prog. Photovolt: Res. Appl., vol. 25, no. 2, pp. 192-200, 2017.
  • M. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, K. Akimoto, “CIGS solar cell with MBE-grown ZnS buffer layer,” Sol. Energ. Mat. Sol. C., vol. 93, no. 6-7, pp. 970-972, 2009.
  • S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett., vol. 74, pp. 729-731, 1999.
  • S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, and Y. M. Yang, “Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition,” Appl. Phys. Lett., vol. 90, pp. 143517–1-143517–3, 2007.
  • S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Sol. Energ. Mat. Sol. C., vol. 90, no. 16, pp. 2710-2719, 2006.
  • R. B. H. Tahar, T. Ban, Y Ohya, Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys., vol. 83, no. 5, pp. 2631-2645, 1998.
  • M. G. Kim, M. G. Kanatzidis, A. Facchetti, T. J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing,” Nat. Mater., vol. 10, pp. 382-388, 2011.
  • G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?,” Mater. Sci. Eng. B, vol. 139, no. 1, pp. 1-23, 2007.
  • V. Craciun, D. Craciun, X.Wang, T. J. Anderson, R. K. Singh, “Transparent and conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures,” J. Optoelectron. Adv. M., vol. 5, no. 2, pp. 401-408, 2003.
  • J. Mass, P. Bhattacharya, R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition,” Mater. Sci. Eng. B, vol. 103, pp. 9-15, 2003.
  • V. Musat, B. Teixeira, E. Fortunato, R. C. C. Monteiro, P. Vilarinho, “Al-doped ZnO thin films by sol–gel method,” Surf. Coat. Technol., vol. 180-181, pp. 659-662, 2004.
  • Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang, L. S. Wen, “Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films,” J. App. Phys., vol. 90, no. 7, pp. 3432-3436, 2001.
  • F. D. Paraguay, M. M. Yoshida, J. Morales, J. Solis, W. L. Estrada, “Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour,” Thin Solid Films, vol. 373, no. 1-2, pp. 137-140, 2000.
  • K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, “ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications,” Thin Solid Films, vol. 431-432, pp. 369-372, 2003.
  • Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, C. J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett., vol. 88, 241108 – 1-241108–3, 2006.
  • Clean Energy Institute, “Physics of Solar Cells,” University of Washington, Seattle, WA, Available: http://photonicswiki.org/index.php?title=Physics_of_Solar_Cells.
  • P. Scherrer, “Bestimmung der GröBe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1918, pp. 98-100, 1918.
  • Z. Ahmad, M. H. Sayyad, “Electrical characteristics of a high rectification ratio organic Schottky diode based on methyl red,” Optoelectron. Adv. Mat.-Rapid Communications, vol. 3(5), pp. 509-512, 2009.
  • A. Ibrahim, A. Ashour, “ZnO/Si solar cell fabricated by spray pyrolysis technique,” J. Mater. Sci.: Mater. Electron., vol. 17, pp. 835-839, 2006.
  • T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki, N. Otogawa, T. Mise, S. Wang, Y. Hoshino, Y. Nakayama, H. Tanoue, and Y. Makita, “Studies on aluminum-doped ZnO films for transparent electrode and antireflection coating of h-FeSi2 optoelectronic devices,” Thin Solid Films, vol. 476, pp. 30-34, 2005.
  • N. F. Habubi, A. O. Mousa, and N. A. Nema, “Fabrication and Characterization of ZnO/p-Si Heterojunction Solar Cell,” World Scientific News, vol. 18, pp. 118-132, 2015.
  • D. Pogrebnyak, N. Y. Jamil, and A. K. M. Muhammed, “Simulation Study of n-ZnO/p-Si Heterojunction Solar Cell,” Nanosystems, Nanomaterials, Nanotechnologies, vol. 9, no. 4, pp. 819-830, 201.
  • H. Kobayashi, T. Ishida, Y. Nakato, and H. Mori, “Mechanism of carrier transport through a silicon-oxide layer for (indium-tin-oxide/silicon-oxide/silicon) solar cells,” J. Appl. Phys., vol. 78, pp. 3931-3939, 1995.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Gökhan Algün 0000-0002-4607-3382

Publication Date November 30, 2018
Published in Issue Year 2018 Volume: 13 Issue: 2

Cite

IEEE G. Algün, “ZnO Kaplama Miktarının n-ZnO/p-Si Heteroeklem Güneş Hücresinin Verimliliğine Etkisi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 13, no. 2, pp. 154–163, 2018, doi: 10.29233/sdufeffd.459518.