Research Article
BibTex RIS Cite

[Ni(2-Benzimidazol-il-üre)2(etanol)2][NO3]2 Bileşiğinin Yoğunluk Fonksiyoneli Teorisi Kullanılarak Yapılan Bazı Kuantum Kimyasal Hesaplamaları

Year 2019, Volume: 14 Issue: 2, 203 - 212, 30.11.2019
https://doi.org/10.29233/sdufeffd.550273

Abstract

Bu çalışmada, moleküler yapısı tek bir kristal
X-ışınım yöntemi ile belirlenen [Ni(2-Benzimidazol-il-üre)
2(etanol)2][NO3]2
bileşiğinin teorik hesaplamaları yapılmıştır. Teorik hesaplamalarda elde edilen
optimize geometri, dipol moment gibi birçok özellik deneysel değerlere oldukça
yakın sonuçlar göstermiştir. Bunların dışında bileşiğin gaz fazında sınır
orbitalleri, hesaplanan sınır orbitallerin enerjilerinden elektronik yapı
tanımlayıcıları, moleküler elektrostatik potansiyel haritası, doğrusal olmayan
optik özellikleri hesaplanmış ve yorumlanmıştır. Çalışmanın birçok organometal kompleksin
moleküler özelliğine ışık tutacağı düşünülmektedir. Yoğunluk Fonksiyonel
Teorisi (YFT), Gaussian 09W programı kullanılarak hesaplama yöntemi olarak
seçilmiştir ve kompleks için
B3LYP/LANL2DZ
seviyesinde optimize edilmiş gaz faz kuantum mekaniksel verileri elde
edilmiştir.

References

  • [1] M.M. Ramla, and M.A. Omar, “Discovery and optimization of pyrrolo[1,2-a] pyrazinones leads to novel and selective inhibitors of PIM kinases,” Bioorg. Med. Chem., 14 (21), 7324–7332, 2006.
  • [2] D. Pathak, N. Siddiqui, B. Bhrigu, W. Ahsan, and M. S. Alam, “Benzimidazoles: A new profile of biological activities,” Der Pharmacia Lettre, 2(2), 27–34, 2010.
  • [3] H. Goker, C. Kus and D.W. Boykin, “Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against candida species,” Bioorg. Med. Chem., 10, 2589–96, 2002.
  • [4] H. Goker, C. Kus and D.W. Boykin, “Synthesis and potent antibacterial activity against MRSA of some novel 1,2- disubstituted-1H-benzimidazole-N-alkylated-5- carboxamidines,” Eur. J. Med. Chem., 40, 1062, 2005.
  • [5] M. Andrzejewska and M.L. Yepez, “Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles,” Eur. J. Med. Chem., 37, 973, 2002.
  • [6] S. Ozden, D. Atabey, and H. Goker, “Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups,” Bioorg. Med. Chem., 13, 1587-97, 2005.
  • [7] R. Curini, S. Materazzi, G. D՜Ascenzo, and G. De Angelis, “Thermal behavior of biological interesting coordination compounds of benzimidazole with divalent metal ions,” Thermochim. Acta, 161(2), 201–374 , 1990.
  • [8] G. Xue, J. Zhang, G. Shi, Y. Wu, and B. Shuen, “Spectroscopic studies on the polymerization of benzimidazole with metallic copper,” J. Chem. Soc., 2, 33–36, 1989.
  • [9] N.T. Abdel Ghani, and A.M. Mansour, “Palladium (II) and platinum (II) complexes containing benzimidazole ligands: Molecular structures, vibrational frequencies and cytotoxicity,” J Mol. Struct., 991,108–126, 2011.
  • [10] H. Küçükbay, B. Çetinkaya, S. Guesmi, and P.H. Dixneuf, “New (Carbene) ruthenium−arene complexes: Preparation and uses in catalytic synthesis of furans,”Organometallics, 15, 2434–2439, 1996.
  • [11] A. Popova, M. Christov, and A. Zwetanova, “Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric acid,” Corros. Sci., 49(5), 2131 –2143, 2005.
  • [12] L. Cireş, H. Ofenberg, T. Nicolaescu, C. Crăiţă, and A. Pollet, “Substituent influence on the fluorescence spectra of 2, 3-diphenylbenzo [b] furan derivatives,” J. Luminescence, 79(2), 91-96, 1998.
  • [13] I. Perkovic, M. Antunovic, I. Marijanovic, K. Pavic, K. Ester, M. Kralj, J. Vlainic, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki, and B. Zorc, “Novel urea and bis-urea primaquine derivatives with hydroxyphenyl or halogenphenyl substituents: Synthesis and biological evaluation,” Eur. J. Med. Chem., 124, 622–636, 2016.
  • [14] W. Wang, D. Kong, H. Cheng, L. Tan, Z. Zhang, X. Zhuang, H. Long, Y. Zhou, Y. Xu, X. Yang, and K. Ding, “New benzimidazole-2-urea derivates as tubulin inhibitors,” Bioorg. Med. Chem. Lett., 24, 4250–4253, 2014.
  • [15] M. Poyraz, H. Berber, C.N. Banti, N. Kourkoumelis, M.J. Manos, and S.K. Hadjikakou, “Synthesis characterization and biological activity of mixed ligand silver(I) complex of 2-benzimidazolylurea and triphenylphosphine,” Polyhedron, 128, 95–103, 2017.
  • [16] M. Poyraz, M. Sari, and C.N. Banti, S.K. Hadjikakou, “Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea,” J. Mol. Struct., 1146, 809-813, 2017.
  • [17] C.N. Banti, M. Poyraz, I. Sainis, M. Sari, G.Rossos, N. Kourkoumelis, and S.K. Hadjikakou, “The periodic table of urea derivative: small molecules of zinc(II) and nickel(II) of diverse antimicrobial and antiproliferative applications” Mol. Divers., 1 – 13, 2019.
  • [18] D. C. Young, Computational Chemistry. New York: Wiley-Interscience, 2011.
  • [19] F. De Proft, and P. Geerlings, “Conceptual and computational DFT in the study of aromaticity,” Chem. Rev., 101(5), 1451‐1464, 2001.
  • [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, Li X., H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, T.Jr. Vreven, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.J. Pomelli, W. Ochterski, L.R. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian09, Wallingford, CT, USA: Gaussian. Inc.
  • [21] P.H. Gümüş, Ö. Tamer, D. Avcı, and Y. Atalay,“4-(Metoksimetil)-1,6-dimetil-2-okso-1,2-dihidropiridin-3-karbonitril molekülünün teorik olarak incelenmesi,” Sakarya Üniversitesi Fen Bilimleri Dergisi, 3, 303–311, 2015.
  • [22] Z. Turhan Irak, S. Gümüş, “Heterotricyclic compounds via click reaction: A computational study,” Noble International Journal of Scientific Research, 1(7), 80–89, 2017.
  • [23] A.D. Becke, “Density-functional exchange energy approximation with correct asymptotic behavior,” Physical Review A, 3098-3100, 1988.
  • [24] C. Lee, W.R. Yang, and Parr G, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, 785-789, 1998.
  • [25] J.B. Foresman, and Æ. Frisch,, Exploring Chemistry with electronic structure methods (2nd ed.), Pittsburgh, PA: Gaussian Inc., 1996.
  • [26] R. Dennington, T. Keith, and J. Millam, GaussView Version 5, Shawnee Mission KS: Semichem Inc., 2009.
  • [27] Z. Turhan Irak, A. Altıkat, Z. Bingül, E. Öztürk, and A. Yiğit, “Determination of DFT method activities of some triazine derivatives as corrosion inhibitors,” in Proc. 4th Imcofe, Roma, 2017, pp. 309-310.
  • [28] C.J. Cramer, Essentials of computational chemistry. London: John Wiley and Sons, 2004, pp.596.
  • [29] I. N. Levine, Many‐Electron Atoms: Quantum chemistry, New Jersey: Prentice‐ Hall Inc, 2000, pp.739.
  • [30] I. Fleming, Frontier Orbitals and Organic Chemical Reactions. London: J. Wiley and Sons, 1976, pp. 249.
  • [31] K. Fukui, Theory of Orientation and Stereoselection, New York: Springer-Verlag, 1975, pp. 420.
  • [32] D.F.V. Lewis, C. Ioannides, and D.V. Parke, “Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure activity relationships,” Xenobiotica, 24, 401-408,1994.
  • [33] R.G. Pearson, “Absolute electronegativity and hardness: Applications to organic chemistry,” J. Org. Chem., 54, 1423–1430, 1989.
  • [34] Z. Zhou, and R.G. Parr, “Activation hardness: New index for describing the orientation of electrophilic aromatic substitution,” J. Am. Chem. Soc., 112, 5720-5724, 1990.
  • [35] L. Ji, Q.X. Zeng, M.L. Wei., L.W. Jin, Q.Y Zhong, “Koopmans Theorem for Large Molecular Systems within Density Functional Theory,”J. Phys. Chem., 110(43), 12005–12009, 2006.
  • [36] D.O. Isin, and N. Karakus, “Quantum chemical study on the inhibition efficiencies of some sym-triazines as inhibitors for mild steel in acidic medium,” J. Taiwan Inst. Chem. E., 50, 306-313, 2015.
  • [37] M. D. Aggarwal, J. Stephens, A. K. Batra, and R.B. Lal, “Bulk growth and characterization of semiorganic nonlinear optical materials,” J. Optoelectron. Adv. M., 5(3), 555‐562, 2003.
  • [38] J. Zyss, Molecular Non-linear Optics: Materials, physics and devices, Boston: Academic Press, 1994.
  • [39] J. Leszczynski, Non‐Linear Optical Properties of Matter, Dordrecht, The Netherlands: Springer, 2006, pp. 676.
  • [40] Z. İrak, S. Gümüş, “Donör–akseptör gruplar içeren bazı heterosiklik bileşiklerin çizgisel olmayan özelliklerinin teorik olarak incelenmesi,” Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 1-8, 2017.
  • [41] A. Hinchliffe, M. H. J. Soscun, “Ab initio studies of the dipole polarizabilities of conjugated molecules, Part 2: Monocyclic azines,” Journal of Molecular Structure, 110 (2), 109‐120,1997.
  • [42] M. Govindarajan, S. Periandy, and K. Carthigayen, “FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene,” Spectrochim. Acta A., 97, 411-422, 2012.

Some Quantum Chemical Calculations of the [Ni (2-Benzimidazoly-urea)2 (ethanol)2] [NO3]2 Compound Using Density Functional Theory

Year 2019, Volume: 14 Issue: 2, 203 - 212, 30.11.2019
https://doi.org/10.29233/sdufeffd.550273

Abstract

The
theoretical calculations of the [Ni(2-Benzimidazoly-urea)
2(ethanol)2]
[NO
3]2 compound, whose molecular structure was determined
with a single crystal X-ray diffraction method, was conducted. Many properties
such as optimized geometry and dipole moment obtained in theoretical
calculations showed very approximate to experimental values. Apart from these,
the frontier orbitals of the compound in the gas phase, the electronic
structure parameters from the energies of the calculated frontier orbitals,
molecular electrostatic potential map, non-linear optical properties were calculated
and interpreted. It is thought that the study will shed light on the molecular
property of many organometal complexes. The Density Functional Theory (DFT) was
selected as a computational method using the Gaussian 09W program, and the
optimized gase phase quantum mechanical data for the complex was obtained in
the B3LYP/LANL2DZ level with
gen
keyword.

References

  • [1] M.M. Ramla, and M.A. Omar, “Discovery and optimization of pyrrolo[1,2-a] pyrazinones leads to novel and selective inhibitors of PIM kinases,” Bioorg. Med. Chem., 14 (21), 7324–7332, 2006.
  • [2] D. Pathak, N. Siddiqui, B. Bhrigu, W. Ahsan, and M. S. Alam, “Benzimidazoles: A new profile of biological activities,” Der Pharmacia Lettre, 2(2), 27–34, 2010.
  • [3] H. Goker, C. Kus and D.W. Boykin, “Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against candida species,” Bioorg. Med. Chem., 10, 2589–96, 2002.
  • [4] H. Goker, C. Kus and D.W. Boykin, “Synthesis and potent antibacterial activity against MRSA of some novel 1,2- disubstituted-1H-benzimidazole-N-alkylated-5- carboxamidines,” Eur. J. Med. Chem., 40, 1062, 2005.
  • [5] M. Andrzejewska and M.L. Yepez, “Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles,” Eur. J. Med. Chem., 37, 973, 2002.
  • [6] S. Ozden, D. Atabey, and H. Goker, “Synthesis and potent antimicrobial activity of some novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives carrying amide or amidine groups,” Bioorg. Med. Chem., 13, 1587-97, 2005.
  • [7] R. Curini, S. Materazzi, G. D՜Ascenzo, and G. De Angelis, “Thermal behavior of biological interesting coordination compounds of benzimidazole with divalent metal ions,” Thermochim. Acta, 161(2), 201–374 , 1990.
  • [8] G. Xue, J. Zhang, G. Shi, Y. Wu, and B. Shuen, “Spectroscopic studies on the polymerization of benzimidazole with metallic copper,” J. Chem. Soc., 2, 33–36, 1989.
  • [9] N.T. Abdel Ghani, and A.M. Mansour, “Palladium (II) and platinum (II) complexes containing benzimidazole ligands: Molecular structures, vibrational frequencies and cytotoxicity,” J Mol. Struct., 991,108–126, 2011.
  • [10] H. Küçükbay, B. Çetinkaya, S. Guesmi, and P.H. Dixneuf, “New (Carbene) ruthenium−arene complexes: Preparation and uses in catalytic synthesis of furans,”Organometallics, 15, 2434–2439, 1996.
  • [11] A. Popova, M. Christov, and A. Zwetanova, “Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric acid,” Corros. Sci., 49(5), 2131 –2143, 2005.
  • [12] L. Cireş, H. Ofenberg, T. Nicolaescu, C. Crăiţă, and A. Pollet, “Substituent influence on the fluorescence spectra of 2, 3-diphenylbenzo [b] furan derivatives,” J. Luminescence, 79(2), 91-96, 1998.
  • [13] I. Perkovic, M. Antunovic, I. Marijanovic, K. Pavic, K. Ester, M. Kralj, J. Vlainic, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki, and B. Zorc, “Novel urea and bis-urea primaquine derivatives with hydroxyphenyl or halogenphenyl substituents: Synthesis and biological evaluation,” Eur. J. Med. Chem., 124, 622–636, 2016.
  • [14] W. Wang, D. Kong, H. Cheng, L. Tan, Z. Zhang, X. Zhuang, H. Long, Y. Zhou, Y. Xu, X. Yang, and K. Ding, “New benzimidazole-2-urea derivates as tubulin inhibitors,” Bioorg. Med. Chem. Lett., 24, 4250–4253, 2014.
  • [15] M. Poyraz, H. Berber, C.N. Banti, N. Kourkoumelis, M.J. Manos, and S.K. Hadjikakou, “Synthesis characterization and biological activity of mixed ligand silver(I) complex of 2-benzimidazolylurea and triphenylphosphine,” Polyhedron, 128, 95–103, 2017.
  • [16] M. Poyraz, M. Sari, and C.N. Banti, S.K. Hadjikakou, “Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea,” J. Mol. Struct., 1146, 809-813, 2017.
  • [17] C.N. Banti, M. Poyraz, I. Sainis, M. Sari, G.Rossos, N. Kourkoumelis, and S.K. Hadjikakou, “The periodic table of urea derivative: small molecules of zinc(II) and nickel(II) of diverse antimicrobial and antiproliferative applications” Mol. Divers., 1 – 13, 2019.
  • [18] D. C. Young, Computational Chemistry. New York: Wiley-Interscience, 2011.
  • [19] F. De Proft, and P. Geerlings, “Conceptual and computational DFT in the study of aromaticity,” Chem. Rev., 101(5), 1451‐1464, 2001.
  • [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, Li X., H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, T.Jr. Vreven, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.J. Pomelli, W. Ochterski, L.R. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian09, Wallingford, CT, USA: Gaussian. Inc.
  • [21] P.H. Gümüş, Ö. Tamer, D. Avcı, and Y. Atalay,“4-(Metoksimetil)-1,6-dimetil-2-okso-1,2-dihidropiridin-3-karbonitril molekülünün teorik olarak incelenmesi,” Sakarya Üniversitesi Fen Bilimleri Dergisi, 3, 303–311, 2015.
  • [22] Z. Turhan Irak, S. Gümüş, “Heterotricyclic compounds via click reaction: A computational study,” Noble International Journal of Scientific Research, 1(7), 80–89, 2017.
  • [23] A.D. Becke, “Density-functional exchange energy approximation with correct asymptotic behavior,” Physical Review A, 3098-3100, 1988.
  • [24] C. Lee, W.R. Yang, and Parr G, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, 785-789, 1998.
  • [25] J.B. Foresman, and Æ. Frisch,, Exploring Chemistry with electronic structure methods (2nd ed.), Pittsburgh, PA: Gaussian Inc., 1996.
  • [26] R. Dennington, T. Keith, and J. Millam, GaussView Version 5, Shawnee Mission KS: Semichem Inc., 2009.
  • [27] Z. Turhan Irak, A. Altıkat, Z. Bingül, E. Öztürk, and A. Yiğit, “Determination of DFT method activities of some triazine derivatives as corrosion inhibitors,” in Proc. 4th Imcofe, Roma, 2017, pp. 309-310.
  • [28] C.J. Cramer, Essentials of computational chemistry. London: John Wiley and Sons, 2004, pp.596.
  • [29] I. N. Levine, Many‐Electron Atoms: Quantum chemistry, New Jersey: Prentice‐ Hall Inc, 2000, pp.739.
  • [30] I. Fleming, Frontier Orbitals and Organic Chemical Reactions. London: J. Wiley and Sons, 1976, pp. 249.
  • [31] K. Fukui, Theory of Orientation and Stereoselection, New York: Springer-Verlag, 1975, pp. 420.
  • [32] D.F.V. Lewis, C. Ioannides, and D.V. Parke, “Interaction of a series of nitriles with the alcohol-inducible isoform of P450: Computer analysis of structure activity relationships,” Xenobiotica, 24, 401-408,1994.
  • [33] R.G. Pearson, “Absolute electronegativity and hardness: Applications to organic chemistry,” J. Org. Chem., 54, 1423–1430, 1989.
  • [34] Z. Zhou, and R.G. Parr, “Activation hardness: New index for describing the orientation of electrophilic aromatic substitution,” J. Am. Chem. Soc., 112, 5720-5724, 1990.
  • [35] L. Ji, Q.X. Zeng, M.L. Wei., L.W. Jin, Q.Y Zhong, “Koopmans Theorem for Large Molecular Systems within Density Functional Theory,”J. Phys. Chem., 110(43), 12005–12009, 2006.
  • [36] D.O. Isin, and N. Karakus, “Quantum chemical study on the inhibition efficiencies of some sym-triazines as inhibitors for mild steel in acidic medium,” J. Taiwan Inst. Chem. E., 50, 306-313, 2015.
  • [37] M. D. Aggarwal, J. Stephens, A. K. Batra, and R.B. Lal, “Bulk growth and characterization of semiorganic nonlinear optical materials,” J. Optoelectron. Adv. M., 5(3), 555‐562, 2003.
  • [38] J. Zyss, Molecular Non-linear Optics: Materials, physics and devices, Boston: Academic Press, 1994.
  • [39] J. Leszczynski, Non‐Linear Optical Properties of Matter, Dordrecht, The Netherlands: Springer, 2006, pp. 676.
  • [40] Z. İrak, S. Gümüş, “Donör–akseptör gruplar içeren bazı heterosiklik bileşiklerin çizgisel olmayan özelliklerinin teorik olarak incelenmesi,” Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 1-8, 2017.
  • [41] A. Hinchliffe, M. H. J. Soscun, “Ab initio studies of the dipole polarizabilities of conjugated molecules, Part 2: Monocyclic azines,” Journal of Molecular Structure, 110 (2), 109‐120,1997.
  • [42] M. Govindarajan, S. Periandy, and K. Carthigayen, “FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene,” Spectrochim. Acta A., 97, 411-422, 2012.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Makaleler
Authors

Zeynep Turhan İrak This is me 0000-0002-3587-2576

Mehmet Poyraz 0000-0002-2908-3394

Publication Date November 30, 2019
Published in Issue Year 2019 Volume: 14 Issue: 2

Cite

IEEE Z. Turhan İrak and M. Poyraz, “[Ni(2-Benzimidazol-il-üre)2(etanol)2][NO3]2 Bileşiğinin Yoğunluk Fonksiyoneli Teorisi Kullanılarak Yapılan Bazı Kuantum Kimyasal Hesaplamaları”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 2, pp. 203–212, 2019, doi: 10.29233/sdufeffd.550273.