Research Article
BibTex RIS Cite

The Electron Ionization Mass Spectra of ONO, ONNO and O3N3 Type Schiff Base Complexes Containing First Row Transition Metal Ions

Year 2020, Volume: 15 Issue: 1, 177 - 193, 31.05.2020
https://doi.org/10.29233/sdufeffd.684472

Abstract

Mono-, di- and trinuclear complexes of Fe(III), Co(II), Ni(II), and Cu(II) ions with Bis-N,N'(salicylidene)-1,3-diaminopropane (LH2), Bis-N,N'(salicylidene)-2,2'-dimethyl-1,3-diaminopropane (LDMH2), N(salicylidene)-2-hydroxyaniline (SAP), and Tris-N,N',N''(salicylidene)-2,2',2''-aminoethylamine (Trensal) were prepared and ionized with 30-110 eV electrons in direct inlet (DI). Compounds with metal-oxygen covalent bonds were observed to give molecular peaks, whereas polynuclear complexes containing coordinative bonds did not have such peaks. It was concluded that the coordinative bonds were dissociated by electron impact (EI). The thermogravimetric analysis reveals that the molecular peak observed for the mononuclear complexes which are stable up to 300 °C is also the base peak. The peaks obtained for the di- and trinuclear complexes that decomposed at these temperatures could not be observed as a molecular signal. The resulting fragments were evaluated and compared with the literature data.

Supporting Institution

Ankara University Scientific Research Projects Coordination Unit

Project Number

16L0430008

Thanks

Authors thank to TUBITAK for financial support of E. K. İnal (Ph.D. Student).

References

  • [1] B. Guhathakurta, P. Basu, C. S. Purohit, N. Bandyopadhyay, G. S. Kumar, S. Chowdhury, and J. P. Naskar, “Synthesis, characterization, structure, DNA binding aspects and molecular docking study of a novel Schiff base ligand and its bis(mu-chloro) bridged Cu(II) dimer,” Polyhedron, 126, 195-204, 2017.
  • [2] N. F. Mazlan, L. L. Tan, N. H. Abd Karim, L. Y. Heng, and M. I. H. Reza, “Optical biosensing using newly synthesized metal salphen complexes: A potential DNA diagnostic tool,” Sensors and Actuators B-Chemical, 242, 176-188, 2017.
  • [3] S. Ullmann, R. Schnorr, M. Handke, C. Laube, B. Abel, M. Findeisen, R. Ruger, T. Heine, and B. Kersting, “Zn2+-Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles,” Chemistry-A European Journal, 23, 3824-3827, 2017.
  • [4] I. A. Ansari, F. Sama, M. Raizada, M. Shahid, R. K. Rajpoot, and Z. A. Siddiqi, “Synthesis and spectral characterization of 2-((2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol derived complexes: Molecular docking and antimicrobial studies,” J. Molecular Structure, 1127, 479-498, 2017.
  • [5] R. Olar, M. Badea, M. Ferbinteanu, N. Stanica, and I. Alan, “Spectral, magnetic and thermal characterization of new Ni(II), Cu(II), Zn(II) and Cd(II) complexes with a bischelate Schiff base,” J. Therm. Anal. Cal., 127, 709-719, 2017.
  • [6] N. Kumar, A. K. Asatkar, S. Panda, and S. S. Zade, “Synthesis, characterization and supramolecular building motifs of substituted salphen- and thiasalphen-metal complexes,” Polyhedron, 117, 718-728, 2016.
  • [7] A. Vlad, M. F. Zaltariov, S. Shova, M. Cazacu, M. Avadanei, A. Soroceanu, and P. Samoila, “New Zn(II) and Cu(II) complexes with in situ generated N2O2 siloxane Schiff base ligands,” Polyhedron, 115, 76-85, 2016.
  • [8] F. A. Mautner, R. C. Fischer, M. Spell, A. R. Acevedo, D. H. Tran, and S. S. Massoud, “Metal(II) complexes of compartmental polynuclear Schiff bases containing phenolate and alkoxy groups,” Crystals, 6, 91, 2016.
  • [9] Y. W. Dong, R. Q. Fan, X. M. Wang, P. Wang, H. J. Zhang, L. G. Wei, Y. Song, X. Du, W. Chen, Y. and L. Yang, “Topological evolution in mercury(II) Schiff base complexes tuned through alkyl substitution-synthesis, solid-state structures, and aggregation-induced emission properties,” European J. Inorg. Chem., 22, 3598-3610, 2016.
  • [10] A. N. Srivastva, N. P. Singh, and C. K. Shriwastaw, “In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation,” Arabian J. Chem., 9, 48-61, 2016.
  • [11] M. F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu, A. Vlad, A. Dobrov, and C. D. Varganici, “Synthesis, characterization and antimicrobial activity of new Cu(II) and Zn(II) complexes with Schiff bases derived from trimethylsilyl-propyl-p-aminobenzoate,” Polyhedron, 100, 121-131, 2015.
  • [12] B. M. Pires, D. M. Silva, L. C. Visentin, B. L. Rodrigues, N. M. D. Carvalho, and R. B. Faria, “Synthesis and characterization of cobalt(III), nickel(II) and copper(II) mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and their catalase-like activity,” Plos One, 10, 2015.
  • [13] G. Y. Nagesh, R. K. Mahendra, and B. H. M. Mruthyunjayaswamy, “Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety,” J. Molecular Structure, 1079, 423-432, 2015.
  • [14] S. Biswas, and A. Ghosh, “A novel 1D chain of azido bridged copper(II) with a salen-type di-Schiff base ligand,” J. Molecular Structure, 1019, 32-36, 2012.
  • [15] M. K. Panda, M. M. Shaikh, and P. Ghosh, “Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant,” Dalton Trans., 39, 2428-2440, 2010.
  • [16] B. Słomińska, W. Chaładaja, and W. Danikiewicza, “Assessment of the various ionization methods in the analysis of metal salen complexes by mass spectrometry,” J. Mass Spectrometry, 49, 392-399, 2014.
  • [17] Y. Ozkay, Z. Incesu, I. Isikdag, and M. Yesilkaya, “Antiproliferative effects of some N-benzylideneanilines,” Cell Biochem. and Func., 26, 102-106, 2008.
  • [18] A. Mentes, “Molybdenum and tungsten(0) tetracarbonyl complexes with pyridyl amine Schiff base ligands,” Transition Met. Chem., 24, 77-80, 1999.
  • [19] L. Chiang, E. N. Laura, J. Alcantra, M. C. P. Wang, T. Storr, and M. P. Shaver, “Tuning ligand electronics and peripheral substitution on cobalt salen complexes,” Dalton Trans., 43, 4295-4304, 2014.
  • [20] B. Jasiewicz, T. Pospieszny, and E. Wyrzykiewicz, “Mass spectrometry of metal complexes of bis-quinolizidine alkaloids: EI and ESI mass spectral study of Co+2, Ni+2, Cu+2 and Zn+2 2-methylsparteine complexes,” J. Mass Spectrometry, 47, 347-351, 2012.
  • [21] S. M. Schildcrout, S. SriHari, and J. Masnovi, “Comparative chemical ionization and electron ionization mass spectra of salen complexes with metals of the first transition series,” Inorg. Chem., 34, 4117-4122, 1995.
  • [22] D. Blachut, W. Danikiewicz, M. Olejnik, and Z. Czarnocki, “Electron ionization mass spectrometry as a tool for the investigation of the ortho effect in fragmentation of some Schiff bases derived from amphetamine analogs,” J. Mass Spectrometry, 39, 966-972, 2004.
  • [23] S. M. S. Haggag, and I. A. M. Abdel-Hamid, “A tridentate (O,N,O) donor Schiff base zinc(II) nano complex,” J. Therm. Anal. Cal., 119, 737-746, 2015.
  • [24] E. M. Zayed, G. G. Mohamed, and A. M. M. Hindy, “Transition metal complexes of novel Schiff base,” J. Therm. Anal. Cal., 120, 893-903, 2015.
  • [25] W. H. Mahmoud, M. M. Omar, and F. N. Sayed, “Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azo dye metal complexes,” J. Therm. Anal. Cal., 124, 1071-1089, 2016.
  • [26] A. M. A. Omyma, L. H. Abdel-Rahman, and R. M. Ramadan, “Ruthenium carbonyl derivatives of N-salicylidene-2-hydroxyaniline,” J. Coord. Chem., 60, 2335-2342, 2007.
  • [27] R. J. Butcher, and E. Sinn, “Relation between magnetic, spectroscopic and structural properties of Bis[chloro(N-isopropyl-2-hydroxybenzyliden)aminato-µ-O-copper(II)] and Bis(N-isopropyl-2-hydroxybenzylidenaminato)copper(II),” Inorg. Chem., 15, 1604-1609, 1976.
  • [28] C. Fukuhara, K. Tsuneyoshi, N. Matsumoto, S. Kida, M. Mikuriya, and M. Mori, “Synthesis and characterization of trinuclear Schiff base complexes containing sulphurdioxide or hydrogensulphite ions as bridging groups,” Dalton Trans., 11, 3473-3479, 1990.
  • [29] A. Gerli, K. S. Hagen, and L. G. Marzilli, “Nuclearity and formulation of SALPN2-complexes formed from M(O2CCH3)2,” Inorg. Chem., 30, 4673-4676, 1991.
  • [30] S. Uhlenbrock, R. Wegner, and B. Krebs, “Synthesis and characterization of novel tri-and hexanuclear zinc complexes with biomimetic chelate ligands,” Dalton Trans., 18, 3731-3736, 1996.
  • [31] F. Ercan, O. Atakol, I. Svoboda, and H. Fuess, “Three heterotrinuclear Schiff base complexes with cobalt(II), copper(II) and manganese(II),” Acta. Cryst., 58, 193-196, 2002.
  • [32] O. Atakol, R. Boca, I. Ercan, F. Ercan, H. Fuess, W. Haase, and R. Herchel, “Magnetic properties of trinuclear Ni-M-Ni complexes, M = Mn, Co and Ni,” Chem. Phys. Lett., 423, 192-196, 2006.
  • [33] S. Durmuş, Ü. Ergun, J. C. Jaud, K. C. Emregül, H. Fuess, and O. Atakol, “Thermal decomposition of some linear trinuclear Schiff base complexes with acetate bridges,” J. Therm. Anal. Cal., 86, 337-346, 2006.
  • [34] J. Reglinski, M. K. Taylor, and A. R. Kennedy, “Hydrogenated Schiff base ligands,” Inorg. Chem. Comm., 9, 736-739, 2006.
  • [35] D. H. Shi, Z. L. You, C. Xu, Q. Zhang, and H. L. Zhu, “Synthesis, crystal structure and urease inhibitory activities of Schiff base metal complexes,” Inorg. Chem. Comm., 10, 404-406, 2007.
  • [36] P. Mukherjee, C. Biswas, M. G. B. Drew, and A. Ghosh, “Structural variations in Ni(II) complexes of Salen type di Schiff base ligand,” Polyhedron, 26, 3121-3128, 2007.
  • [37] L. K. Das, R. M. Kadam, A. Bauza, A. Frontera, and A. Ghosh, “Differences in nuclearity, molecular shapes and coordination modes of azide in the complexes of Cd(II) and Hg(II) with a metalloligand [CuL] (H2L=N,N’-Bis (salicylidene)-1,3-diaminopropanediamine),” Inorg. Chem., 51, 12407-12418, 2012.
  • [38] S. Saha, S. Sasmal, C. R. Choudhury, C. J. Gomez-Garcia, E. Garribba, and S. Mitra, “A new linear double phenoxide-bridged trinuclear Cu(II) Schiff base complex,” Polyhedron, 69, 262-269, 2014.
  • [39] S. Ghosh, G. Aromi, P. Gamez, and A. Ghosh, “The impact of anion modulated structural variations on the magnetic coupling in trinuclear heterometallic CuII-CoII complexes derived from a salen-type Schiff base ligand,” Eur. J. Inorg. Chem., 21, 3341-3349, 2014.
  • [40] A. Hazari, and A. Ghosh, “Trinuclear complexes of [CuL] with HgX2,” Polyhedron, 87, 403-410, 2015.
  • [41] L. K. Das, C. J. Gomez-Garcia, M. G. B. Drew, and A. Ghosh, “Plying with different metalloligands [NiL] and Hg to [NiL] ratios to tune the nuclearity of Ni(II)-Hg(II) complexes,” Polyhedron, 87, 311-320, 2015.
  • [42] A. Hazari, S. Giri, C. Diaz, and A. Ghosh, “Unusual site selection of NCS- in trinuclear complexes of Cu(II) and Ni(II) with a reduced N2O2 donor Schiff base: Structural, theoretical and magnetic studies,” Polyhedron. 118, 70-80, 2016.
  • [43] M. G. B. Drew, R. N. Prasad, and R. P. Sharma, “Structure of (N,N’-Trimethylenedisalicylidene aminato)nickel(II) and (N,N’-Trimethylenedisalicylideneaminato)copper(II),” Acta. Cryst., 41, 1755-1758, 1985.
  • [44] M. Aksu, S. Durmuş, M. Sari, K. C. Emregül, I. Svoboda, H. Fuess, and O. Atakol, “Investigation of thermal decomposition some heterodinuclear NiII-MII complexes prepared from ONNO type reduced Schiff base compounds,” J. Therm. Anal. Cal., 90, 541-547, 2007.
  • [45] G. N. Tyson Jr, and S. C. Adams, “The configuration of some cupric, nickelous and cobaltus complexes by means of magnetic measurements,” J. Am. Chem. Soc., 62, 1228-1229, 1940.
  • [46] E. Breitmaier, and G. Jung, Organische Chemie, 6. Überarbeitete Auflage. Stuttgart: Georg Thieme-Verlag, 1987.
  • [47] D. M. Kurtz Jr., “Oxo- and hydroxo bridged diiron complexes,” Chem. Rev., 90, 585-608, 1990.
  • [48] F. Maggio, T. Pizzino, V. Romano, and G. Dia, “Adduct formation by sub-coordinated metal complexes,” J. Inorg. Nucl. Chem., 38, 599-601, 1976.
  • [49] Ü. Ergun, O. Atakol, F. Z. Eriş, A. Yücel, and E. Düzgün, “Estimation of coordination bond energies of NH3, H2O and Et2NH ligands in the Ni(II) and Cu(II) complexes,” J. Therm. Anal. Cal., 97, 1007-1014, 2009.
  • [50] O. Atakol, A. Kenar, and M. Kabak, “Some complexes of nickel(II) with ono type Schiff bases and their monoligand adducts,” Synth. React. Inorg. Met.-Org. Chem., 27, 29-40, 1997.
  • [51] N. N. Greenwood, and A. Earnshow, Chemistry of the Elements, 2nd edition. Oxford: Elsevier, 1997.
  • [52] N. Acar, O. Atakol, Ş. B. Sopaci, D. C. Duman, I. Svoboda, and S. Öz, “The investigations of thermal behavior, kinetic analysis, and biological activity of trinuclear complexes prepared ONNO-type Schiff bases with nitrito and nitrato mu-bridges,” J. Therm. Anal. Cal., 127, 1319-1337, 2017.
  • [53] J. Ribas Gispert, Coordination Chemistry. Weinheim: Wiley-VCH, 2008.

Birinci Sıra Geçiş Metali İyonlarını İçeren ONO, ONNO ve O3N3 Tipi Schiff Bazı Komplekslerinin Elektron İyonlaştırma Kütle Spektrumları

Year 2020, Volume: 15 Issue: 1, 177 - 193, 31.05.2020
https://doi.org/10.29233/sdufeffd.684472

Abstract

Bis-N,N'(salisiliden)-1,3-diaminopropan (LH2), Bis-N,N'(salisiliden)-2,2'-dimetil-1,3-diaminopropan (LDMH2), N(salisiliden)-2-hidroksianilin (SAP) ve Tris-N,N',N''(salisiliden)-2,2',2''-aminoetilamin (Trensal) ile tek, iki ve üç çekirdekli Fe(III), Co(II), Ni(II) ve Cu(II) kompleksleri hazırlanmış ve direkt inlet (DI) giriş sisteminde 30-110 eV enerjili elektronlarla iyonlaştırılmıştır. Metal-oksijen kovalent bağı içeren bileşiklerde moleküler pik gözlenirken koordinatif bağ içeren çok çekirdekli komplekslerde bu pikler görülmemiştir. Koordinatif bağların elektron etkisi (EI) ile parçalandığı sonucuna varılmıştır. Termogravimetrik analiz, 300 °C'ye kadar kararlı olan tek çekirdekli kompleksler için gözlenen moleküler pikin ayrıca temel pik olduğunu da ortaya koymaktadır. Bu sıcaklıklarda parçalanan iki ve üç çekirdekli kompleksler için elde edilen pikler, moleküler sinyal olarak gözlenememiştir. Elde edilen fragmentler değerlendirilerek literatür verileri ile karşılaştırılmıştır.

Project Number

16L0430008

References

  • [1] B. Guhathakurta, P. Basu, C. S. Purohit, N. Bandyopadhyay, G. S. Kumar, S. Chowdhury, and J. P. Naskar, “Synthesis, characterization, structure, DNA binding aspects and molecular docking study of a novel Schiff base ligand and its bis(mu-chloro) bridged Cu(II) dimer,” Polyhedron, 126, 195-204, 2017.
  • [2] N. F. Mazlan, L. L. Tan, N. H. Abd Karim, L. Y. Heng, and M. I. H. Reza, “Optical biosensing using newly synthesized metal salphen complexes: A potential DNA diagnostic tool,” Sensors and Actuators B-Chemical, 242, 176-188, 2017.
  • [3] S. Ullmann, R. Schnorr, M. Handke, C. Laube, B. Abel, M. Findeisen, R. Ruger, T. Heine, and B. Kersting, “Zn2+-Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles,” Chemistry-A European Journal, 23, 3824-3827, 2017.
  • [4] I. A. Ansari, F. Sama, M. Raizada, M. Shahid, R. K. Rajpoot, and Z. A. Siddiqi, “Synthesis and spectral characterization of 2-((2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol derived complexes: Molecular docking and antimicrobial studies,” J. Molecular Structure, 1127, 479-498, 2017.
  • [5] R. Olar, M. Badea, M. Ferbinteanu, N. Stanica, and I. Alan, “Spectral, magnetic and thermal characterization of new Ni(II), Cu(II), Zn(II) and Cd(II) complexes with a bischelate Schiff base,” J. Therm. Anal. Cal., 127, 709-719, 2017.
  • [6] N. Kumar, A. K. Asatkar, S. Panda, and S. S. Zade, “Synthesis, characterization and supramolecular building motifs of substituted salphen- and thiasalphen-metal complexes,” Polyhedron, 117, 718-728, 2016.
  • [7] A. Vlad, M. F. Zaltariov, S. Shova, M. Cazacu, M. Avadanei, A. Soroceanu, and P. Samoila, “New Zn(II) and Cu(II) complexes with in situ generated N2O2 siloxane Schiff base ligands,” Polyhedron, 115, 76-85, 2016.
  • [8] F. A. Mautner, R. C. Fischer, M. Spell, A. R. Acevedo, D. H. Tran, and S. S. Massoud, “Metal(II) complexes of compartmental polynuclear Schiff bases containing phenolate and alkoxy groups,” Crystals, 6, 91, 2016.
  • [9] Y. W. Dong, R. Q. Fan, X. M. Wang, P. Wang, H. J. Zhang, L. G. Wei, Y. Song, X. Du, W. Chen, Y. and L. Yang, “Topological evolution in mercury(II) Schiff base complexes tuned through alkyl substitution-synthesis, solid-state structures, and aggregation-induced emission properties,” European J. Inorg. Chem., 22, 3598-3610, 2016.
  • [10] A. N. Srivastva, N. P. Singh, and C. K. Shriwastaw, “In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation,” Arabian J. Chem., 9, 48-61, 2016.
  • [11] M. F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu, A. Vlad, A. Dobrov, and C. D. Varganici, “Synthesis, characterization and antimicrobial activity of new Cu(II) and Zn(II) complexes with Schiff bases derived from trimethylsilyl-propyl-p-aminobenzoate,” Polyhedron, 100, 121-131, 2015.
  • [12] B. M. Pires, D. M. Silva, L. C. Visentin, B. L. Rodrigues, N. M. D. Carvalho, and R. B. Faria, “Synthesis and characterization of cobalt(III), nickel(II) and copper(II) mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and their catalase-like activity,” Plos One, 10, 2015.
  • [13] G. Y. Nagesh, R. K. Mahendra, and B. H. M. Mruthyunjayaswamy, “Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety,” J. Molecular Structure, 1079, 423-432, 2015.
  • [14] S. Biswas, and A. Ghosh, “A novel 1D chain of azido bridged copper(II) with a salen-type di-Schiff base ligand,” J. Molecular Structure, 1019, 32-36, 2012.
  • [15] M. K. Panda, M. M. Shaikh, and P. Ghosh, “Controlled oxidation of organic sulfides to sulfoxides under ambient conditions by a series of titanium isopropoxide complexes using environmentally benign H2O2 as an oxidant,” Dalton Trans., 39, 2428-2440, 2010.
  • [16] B. Słomińska, W. Chaładaja, and W. Danikiewicza, “Assessment of the various ionization methods in the analysis of metal salen complexes by mass spectrometry,” J. Mass Spectrometry, 49, 392-399, 2014.
  • [17] Y. Ozkay, Z. Incesu, I. Isikdag, and M. Yesilkaya, “Antiproliferative effects of some N-benzylideneanilines,” Cell Biochem. and Func., 26, 102-106, 2008.
  • [18] A. Mentes, “Molybdenum and tungsten(0) tetracarbonyl complexes with pyridyl amine Schiff base ligands,” Transition Met. Chem., 24, 77-80, 1999.
  • [19] L. Chiang, E. N. Laura, J. Alcantra, M. C. P. Wang, T. Storr, and M. P. Shaver, “Tuning ligand electronics and peripheral substitution on cobalt salen complexes,” Dalton Trans., 43, 4295-4304, 2014.
  • [20] B. Jasiewicz, T. Pospieszny, and E. Wyrzykiewicz, “Mass spectrometry of metal complexes of bis-quinolizidine alkaloids: EI and ESI mass spectral study of Co+2, Ni+2, Cu+2 and Zn+2 2-methylsparteine complexes,” J. Mass Spectrometry, 47, 347-351, 2012.
  • [21] S. M. Schildcrout, S. SriHari, and J. Masnovi, “Comparative chemical ionization and electron ionization mass spectra of salen complexes with metals of the first transition series,” Inorg. Chem., 34, 4117-4122, 1995.
  • [22] D. Blachut, W. Danikiewicz, M. Olejnik, and Z. Czarnocki, “Electron ionization mass spectrometry as a tool for the investigation of the ortho effect in fragmentation of some Schiff bases derived from amphetamine analogs,” J. Mass Spectrometry, 39, 966-972, 2004.
  • [23] S. M. S. Haggag, and I. A. M. Abdel-Hamid, “A tridentate (O,N,O) donor Schiff base zinc(II) nano complex,” J. Therm. Anal. Cal., 119, 737-746, 2015.
  • [24] E. M. Zayed, G. G. Mohamed, and A. M. M. Hindy, “Transition metal complexes of novel Schiff base,” J. Therm. Anal. Cal., 120, 893-903, 2015.
  • [25] W. H. Mahmoud, M. M. Omar, and F. N. Sayed, “Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azo dye metal complexes,” J. Therm. Anal. Cal., 124, 1071-1089, 2016.
  • [26] A. M. A. Omyma, L. H. Abdel-Rahman, and R. M. Ramadan, “Ruthenium carbonyl derivatives of N-salicylidene-2-hydroxyaniline,” J. Coord. Chem., 60, 2335-2342, 2007.
  • [27] R. J. Butcher, and E. Sinn, “Relation between magnetic, spectroscopic and structural properties of Bis[chloro(N-isopropyl-2-hydroxybenzyliden)aminato-µ-O-copper(II)] and Bis(N-isopropyl-2-hydroxybenzylidenaminato)copper(II),” Inorg. Chem., 15, 1604-1609, 1976.
  • [28] C. Fukuhara, K. Tsuneyoshi, N. Matsumoto, S. Kida, M. Mikuriya, and M. Mori, “Synthesis and characterization of trinuclear Schiff base complexes containing sulphurdioxide or hydrogensulphite ions as bridging groups,” Dalton Trans., 11, 3473-3479, 1990.
  • [29] A. Gerli, K. S. Hagen, and L. G. Marzilli, “Nuclearity and formulation of SALPN2-complexes formed from M(O2CCH3)2,” Inorg. Chem., 30, 4673-4676, 1991.
  • [30] S. Uhlenbrock, R. Wegner, and B. Krebs, “Synthesis and characterization of novel tri-and hexanuclear zinc complexes with biomimetic chelate ligands,” Dalton Trans., 18, 3731-3736, 1996.
  • [31] F. Ercan, O. Atakol, I. Svoboda, and H. Fuess, “Three heterotrinuclear Schiff base complexes with cobalt(II), copper(II) and manganese(II),” Acta. Cryst., 58, 193-196, 2002.
  • [32] O. Atakol, R. Boca, I. Ercan, F. Ercan, H. Fuess, W. Haase, and R. Herchel, “Magnetic properties of trinuclear Ni-M-Ni complexes, M = Mn, Co and Ni,” Chem. Phys. Lett., 423, 192-196, 2006.
  • [33] S. Durmuş, Ü. Ergun, J. C. Jaud, K. C. Emregül, H. Fuess, and O. Atakol, “Thermal decomposition of some linear trinuclear Schiff base complexes with acetate bridges,” J. Therm. Anal. Cal., 86, 337-346, 2006.
  • [34] J. Reglinski, M. K. Taylor, and A. R. Kennedy, “Hydrogenated Schiff base ligands,” Inorg. Chem. Comm., 9, 736-739, 2006.
  • [35] D. H. Shi, Z. L. You, C. Xu, Q. Zhang, and H. L. Zhu, “Synthesis, crystal structure and urease inhibitory activities of Schiff base metal complexes,” Inorg. Chem. Comm., 10, 404-406, 2007.
  • [36] P. Mukherjee, C. Biswas, M. G. B. Drew, and A. Ghosh, “Structural variations in Ni(II) complexes of Salen type di Schiff base ligand,” Polyhedron, 26, 3121-3128, 2007.
  • [37] L. K. Das, R. M. Kadam, A. Bauza, A. Frontera, and A. Ghosh, “Differences in nuclearity, molecular shapes and coordination modes of azide in the complexes of Cd(II) and Hg(II) with a metalloligand [CuL] (H2L=N,N’-Bis (salicylidene)-1,3-diaminopropanediamine),” Inorg. Chem., 51, 12407-12418, 2012.
  • [38] S. Saha, S. Sasmal, C. R. Choudhury, C. J. Gomez-Garcia, E. Garribba, and S. Mitra, “A new linear double phenoxide-bridged trinuclear Cu(II) Schiff base complex,” Polyhedron, 69, 262-269, 2014.
  • [39] S. Ghosh, G. Aromi, P. Gamez, and A. Ghosh, “The impact of anion modulated structural variations on the magnetic coupling in trinuclear heterometallic CuII-CoII complexes derived from a salen-type Schiff base ligand,” Eur. J. Inorg. Chem., 21, 3341-3349, 2014.
  • [40] A. Hazari, and A. Ghosh, “Trinuclear complexes of [CuL] with HgX2,” Polyhedron, 87, 403-410, 2015.
  • [41] L. K. Das, C. J. Gomez-Garcia, M. G. B. Drew, and A. Ghosh, “Plying with different metalloligands [NiL] and Hg to [NiL] ratios to tune the nuclearity of Ni(II)-Hg(II) complexes,” Polyhedron, 87, 311-320, 2015.
  • [42] A. Hazari, S. Giri, C. Diaz, and A. Ghosh, “Unusual site selection of NCS- in trinuclear complexes of Cu(II) and Ni(II) with a reduced N2O2 donor Schiff base: Structural, theoretical and magnetic studies,” Polyhedron. 118, 70-80, 2016.
  • [43] M. G. B. Drew, R. N. Prasad, and R. P. Sharma, “Structure of (N,N’-Trimethylenedisalicylidene aminato)nickel(II) and (N,N’-Trimethylenedisalicylideneaminato)copper(II),” Acta. Cryst., 41, 1755-1758, 1985.
  • [44] M. Aksu, S. Durmuş, M. Sari, K. C. Emregül, I. Svoboda, H. Fuess, and O. Atakol, “Investigation of thermal decomposition some heterodinuclear NiII-MII complexes prepared from ONNO type reduced Schiff base compounds,” J. Therm. Anal. Cal., 90, 541-547, 2007.
  • [45] G. N. Tyson Jr, and S. C. Adams, “The configuration of some cupric, nickelous and cobaltus complexes by means of magnetic measurements,” J. Am. Chem. Soc., 62, 1228-1229, 1940.
  • [46] E. Breitmaier, and G. Jung, Organische Chemie, 6. Überarbeitete Auflage. Stuttgart: Georg Thieme-Verlag, 1987.
  • [47] D. M. Kurtz Jr., “Oxo- and hydroxo bridged diiron complexes,” Chem. Rev., 90, 585-608, 1990.
  • [48] F. Maggio, T. Pizzino, V. Romano, and G. Dia, “Adduct formation by sub-coordinated metal complexes,” J. Inorg. Nucl. Chem., 38, 599-601, 1976.
  • [49] Ü. Ergun, O. Atakol, F. Z. Eriş, A. Yücel, and E. Düzgün, “Estimation of coordination bond energies of NH3, H2O and Et2NH ligands in the Ni(II) and Cu(II) complexes,” J. Therm. Anal. Cal., 97, 1007-1014, 2009.
  • [50] O. Atakol, A. Kenar, and M. Kabak, “Some complexes of nickel(II) with ono type Schiff bases and their monoligand adducts,” Synth. React. Inorg. Met.-Org. Chem., 27, 29-40, 1997.
  • [51] N. N. Greenwood, and A. Earnshow, Chemistry of the Elements, 2nd edition. Oxford: Elsevier, 1997.
  • [52] N. Acar, O. Atakol, Ş. B. Sopaci, D. C. Duman, I. Svoboda, and S. Öz, “The investigations of thermal behavior, kinetic analysis, and biological activity of trinuclear complexes prepared ONNO-type Schiff bases with nitrito and nitrato mu-bridges,” J. Therm. Anal. Cal., 127, 1319-1337, 2017.
  • [53] J. Ribas Gispert, Coordination Chemistry. Weinheim: Wiley-VCH, 2008.
There are 53 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Makaleler
Authors

Emine Kübra İnal 0000-0001-8334-2791

Orhan Atakol 0000-0003-0977-6588

Mehmet Abdulkadir Akay This is me 0000-0001-5763-4379

Project Number 16L0430008
Publication Date May 31, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

IEEE E. K. İnal, O. Atakol, and M. A. Akay, “The Electron Ionization Mass Spectra of ONO, ONNO and O3N3 Type Schiff Base Complexes Containing First Row Transition Metal Ions”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 1, pp. 177–193, 2020, doi: 10.29233/sdufeffd.684472.