Research Article
BibTex RIS Cite

Ultrasonik Ortamda Biyokömür Kullanarak Sulu Çözeltiden 5-Florourasilin Giderilmesi: Yanıt Yüzey Modellemesi ve Optimizasyonu

Year 2020, Volume: 15 Issue: 2, 264 - 286, 29.11.2020
https://doi.org/10.29233/sdufeffd.800157

Abstract

Kemoterapide en çok reçete edilen aktif maddelerden biri olan ve atık su arıtma tesisi sahasında yaygın olarak bulunan 5-Florourasilin (5-FLU) adsorpsiyonu, kağıt çamuru ile buğday kabuklarından üretilen biyokömürle ultrasonik ortamda gerçekleştirilmiştir. Adsorbent olarak kullanılan biyokömür, SEM, EDX, BET, FT-IR ve XRF analizleri ile karakterize edilmiştir. Yanıt yüzey modellemesi ve Box-Behnken tasarımı kullanılarak optimum koşullar ile 5-FLU konsantrasyonu, adsorpsiyon zamanı ve adsorbent miktarı parametrelerinin etkileri araştırılmıştır. Adsorbent miktarı en etkili parametre olarak belirtilirken, optimum adsorpsiyon koşulları: konsantrasyon = 5,48 mg/L, adsorbent miktarı = 1,61 g, zaman = 39,61 dakika olarak tahmin edilmiş ve bu şartlarda % 95,99 oranında adsorpsiyon gerçekleşeceği belirlenmiştir. Langmuir izoterm modeli deneysel veriler için daha iyi bir uyum (R2 = 0,999) göstermiş ve maksimum adsorpsiyon kapasitesi (qmax), Langmuir izotermiyle gösterildiği gibi 5,75 mg/g olarak bulunmuştur. Kinetik olarak adsorpsiyon işlemi, kemisorpsiyonun hız sınırlayıcı adım olduğunu gösteren pseudo birinci derece model olarak belirlenmiştir.

Thanks

Bu çalışmanın yazarı olarak, desteklerinden dolayı Prof. Dr. Berkant Kayan’a çok teşekkür ederim.

References

  • [1] M. Feng, R. Qu, X. Zhang, P. Sun, Y. Sui, L. Wang, and Z. Wang, “Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts,” Water Res., 85, 1–10, 2015.
  • [2] B. Petrie, R. Barden, and B. Kasprzyk-Hordern, “A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring,” Water Res., 72, 3–27, 2015.
  • [3] M. Governo, M. S. F. Santos, A. Alves, and L. M. Madeira, “Degradation of the cytostatic 5-Fluorouracil in water by Fenton and photo-assisted oxidation processes,” Environ. Sci. Pollut. Res., 24, 844–854, 2017.
  • [4] E. M. Siedlecka, “Removal of cytostatic drugs from water and wastewater: Progress in the development of advanced treatment methods,” in Fate and Effects of Anticancer Drugs in the Environment, E. Heath, M. Isidori, T. Kosjek, and M. Filipič, Eds. Switzerland: Springer, Cham, 2020, pp. 197-219.
  • [5] S. Ndaw, F. Denis, P. Marsan, A. d’Almeida, and A. Robert, “Biological monitoring of occupational exposure to 5-fluorouracil: urinary α-fluoro-β-alanine assay by high performance liquid chromatography tandem mass spectrometry in health care personnel,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 878 (27), 2630–2634, 2010.
  • [6] T. Kosjek, S. Perko, D. Zigon, and E. Heath, “Fluorouracil in the environment: Analysis, occurrence, degradation and transformation,” J. Chromatogr. A, 1290, 62– 72, 2013.
  • [7] S. Zhan, Q. Zhao, S. Chen, J. Wang, Z. Liu, and C. Chen, “Solubility and partition coefficients of 5-Fluorouracil in ScCO2 and ScCO2/Poly(l-lactic acid),” J. Chem. Eng. Data, 59 (4), 1158−1164, 2014.
  • [8] A. Koltsakidou, M. Antonopoulou, E. Evgenidou, I. Konstantinou, A. E. Giannakas, M. Papadaki, D. Bikiaris, and D. A Lambropoulou, “Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study,” Sci. Total Environ., 578, 257−267, 2017.
  • [9] J. Zhang, V. W. C. Chang, A. Giannis, and J-Y. Wang, “Removal of cytostatic drugs from aquatic environment: a review,” Sci. Total Environ., 445–446, 281–298, 2013.
  • [10] I. Ali, M. Asim, and T.A. Khan, “Low cost adsorbents for the removal of organic pollutants from wastewater,” J. Environ. Manag., 113, 170–183, 2012.
  • [11] N. Sivarajasekar, and R. Baskar, “Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review,” J. Chem. Pharm. Res., 7 (9), 737–748, 2015.
  • [12] Y. Zhou, L. Zhang and Z. Cheng, “Removal of organic pollutants from aqueous solution using agricultural wastes: A review,” J. Mol. Liq., 212, 739–762, 2015.
  • [13] M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, “Biochar as a sorbent for contaminant management in soil and water: A review,” Chemosphere, 99, 19–33, 2014.
  • [14] C. Wang, and H. Wang, “Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles,” Chemosphere, 192, 1–4, 2018.
  • [15] W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D. C. W. Tsang, Y. S. Ok, and B. Gao, “Biochar technology in wastewater treatment: A critical review,” Chemosphere, 252, 126539, 2020.
  • [16] J.N. Sahu, J. Acharya, and B.C. Meikap, “Response surface modeling and optimization of chromium(VI) removal from aqueous solution using tamarind wood activated carbon in batch process,” J. Hazard. Mater., 172 (2-3), 818–825, 2009.
  • [17] Z. Alam, S.A. Muyibi, and J. Toramae, “Statistical optimization of adsorption processes for removal of 2 4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches,” J. Environ. Sci., 19 (6), 674–677, 2007.
  • [18] K. P. Singh, S. Gupta, A. K. Singh, and S. Sinha, “Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach,” J. Hazard. Mater., 186 (2-3), 1462–1473, 2011.
  • [19] F. N. Çatlıoğlu, S. Akay, B. Gözmen, E. Turunc, I. Anastopoulos, B. Kayan, and D. Kalderis, “Fe‑modified hydrochar from orange peel as adsorbent of food colorant Brilliant Black: process optimization and kinetic studies,” Int. J. Environ. Sci. Technol., 17, 1975–1990, 2020.
  • [20] D. Kalderis, B. Kayan, S. Akay, Esra Kulaksız, and B. Gözmen, “Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: Process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste,” J. Environ. Chem. Eng., 5 (3), 2222-2231, 2017.
  • [21] L. Ioannou-Ttofa, and D. Fatta-Kassinos, “Cytostatic drug residues in wastewater treatment plants: Sources, removal efficiencies and current challenges,” in Fate and Effects of Anticancer Drugs in the Environment, E. Heath, M. Isidori, T. Kosjek, and M. Filipič, Eds. Switzerland: Springer, Cham, 2020, pp. 103-138.
  • [22] L. Kovalova, D. R. U. Knappe, K. Lehnberg, C. Kazner, and J. Hollender, “Removal of highly polar micropollutants from wastewater by powdered activated carbon” Environ. Sci. Pollut. Res., 20, 3607–3615, 2013.
  • [23] M. Klavarioti, D. Mantzavinos and D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes,” Environ. Int., 35 (2), 402–417, 2009.
  • [24] S. Zhu, X. Huang, F. Ma, L. Wang, X. Duan, and S. Wang, “Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms,” Environ. Sci. Technol., 52 (15), 8649–8658, 2018.
  • [25] S. Meyer, B. Glaser, and P. Quicker, “Technical, economical and climate related aspects of biochar production technologies: a literature review,” Environ. Sci. Technol., 45 (22), 9473–9483, 2011.
  • [26] G. Newcombe, R. Hayes, and M. Drikas, “Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics,” Colloids Surf. A Physicochem. Eng. Asp., 78, 65–71, 1993.
  • [27] A. Khataee, B. Kayan, D. Kalderis, A. Karimi, S. Akay, and M. Konsolakis, “Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar,” Ultrason. Sonochem., 35, 72–80, 2017.
  • [28] A. R. Bagheri, M. Ghaedi, A. Asfaram, A. A. Bazrafshan, and R. Jannesar, “Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology,” Ultrason. Sonochem., 34, 294–304, 2017.
  • [29] H. J. Bachmann, T. D. Bucheli, A. Dieguez-Alonso, D. Fabbri, H. Knicker, H. P. Schmidt, et al., “Toward the standardization of biochar analysis: The COST action TD1107 interlaboratory comparison,” J. Agric. Food Chem., 64 (2), 513–527, 2016.
  • [30] G. N. Kasozi, A. R. Zimmerman, P. Nkedi-Kizza, and B. Gao, “Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars),” Environ. Sci. Technol., 44 (16), 6189–6195, 2010.
  • [31] V. Merino, A. López, Y. Kalia, and R. Guy, “Electrorepulsion versus electroosmosis: effect of pH on the iontophoretic flux of 5-Fluorouracil,” Pharm. Res., 16 (5), 758–761, 1999.
  • [32] K. Sun, M. Keiluweit, M. Kleber, Z. Pan, and B. Xing, “Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure,” Bioresour. Technol.,” 102 (21), 9897–9903, 2011.
  • [33] M. Teixido, J. J. Pignatello, J. L. Beltran, M. Granados, and J. Peccia, “Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar),” Environ. Sci. Technol., 45 (23), 10020–10027, 2011.
  • [34] M. Inyang, and E. Dickenson, “The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review,” Chemosphere, 134, 232–240, 2015.
  • [35] X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang, “Application of biochar for the removal of pollutants from aqueous solutions,” Chemosphere, 125, 70–85, 2015.
  • [36] S. Y. Oh, J. G. Son, and P. C. Chiu, “Biochar-mediated reductive transformation of nitro herbicides and explosives,” Environ. Toxicol. Chem., 32 (3), 501–508, 2013.
  • [37] M. Şener, B. Kayan, S. Akay, B. Gözmen, and D. Kalderis, “Fe-modified sporopollenin as a composite biosorbent for the removal of Pb2+ from aqueous solutions,” Desal. Wat. Treat., 3994, 1–19, 2016.
  • [38] M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S. M. Langroodi, I. Tyagi, S. Agarwal, and V. K. Gupta, “Ultrasound assisted adsorption of malachite green dye onto ZnS:Cu- NP-AC: equilibrium isotherms and kinetic studies – response surface optimization,” Sep. Purif. Technol., 156 (2), 780–788, 2015.
  • [39] I. Šafařik, Z. Maděrova, K. Pospišková, H.-P. Schmidt, E. Baldiková, J. Filip, M. Křížek, O. Malina, and M. Šafaříková, “Magnetically modified biochar for organic xenobiotics removal,” Water Sci. Technol., 74 (7), 1706–1715, 2016.
  • [40] A. A. Farghali, M. Bahgat, A. Enaiet Allah, and M. H. Khedr, “Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures,” Beni-Suef Univ. J. Basic Appl. Sci., 2 (2), 61–71, 2013.

Removal of 5-Fluorouracil from Aqueous Solution Using Biochar in Ultrasonic Medium: Response Surface Modeling and Optimization

Year 2020, Volume: 15 Issue: 2, 264 - 286, 29.11.2020
https://doi.org/10.29233/sdufeffd.800157

Abstract

The adsorption of 5-Fluorouracil (5-FLU), one of the most prescribed active substances in chemotherapy and commonly found in wastewater treatment plant area, was achieved in ultrasonic medium on biochar produced from paper sludge and wheat husks. Biochar used as adsorbent was characterized by SEM, EDX, BET, FT-IR and XRF analyses. By using response surface modeling and Box-Behnken design, the optimum conditions and effects of 5-FLU concentration, adsorption time and adsorbent dosage parameters were investigated. The adsorbent was stated the most influential factor whereas the optimum adsorption conditions were predicted as: concentration = 5.48 mg/L, adsorbent dosage = 1.61g, adsorption time = 39.61 min, and was determined that adsorption would occur at a rate of 95.99% at these conditions. The Langmuir isotherm model provided a better fit (R2=0.999) for the experimental data and that maximum adsorption capacity (qmax) was found 5.75 mg/g as indicated by the Langmuir isotherm. Kinetically, the adsorption process determined a pseudo-first order model, indicating that chemisorption was the rate-limiting step.

References

  • [1] M. Feng, R. Qu, X. Zhang, P. Sun, Y. Sui, L. Wang, and Z. Wang, “Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts,” Water Res., 85, 1–10, 2015.
  • [2] B. Petrie, R. Barden, and B. Kasprzyk-Hordern, “A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring,” Water Res., 72, 3–27, 2015.
  • [3] M. Governo, M. S. F. Santos, A. Alves, and L. M. Madeira, “Degradation of the cytostatic 5-Fluorouracil in water by Fenton and photo-assisted oxidation processes,” Environ. Sci. Pollut. Res., 24, 844–854, 2017.
  • [4] E. M. Siedlecka, “Removal of cytostatic drugs from water and wastewater: Progress in the development of advanced treatment methods,” in Fate and Effects of Anticancer Drugs in the Environment, E. Heath, M. Isidori, T. Kosjek, and M. Filipič, Eds. Switzerland: Springer, Cham, 2020, pp. 197-219.
  • [5] S. Ndaw, F. Denis, P. Marsan, A. d’Almeida, and A. Robert, “Biological monitoring of occupational exposure to 5-fluorouracil: urinary α-fluoro-β-alanine assay by high performance liquid chromatography tandem mass spectrometry in health care personnel,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 878 (27), 2630–2634, 2010.
  • [6] T. Kosjek, S. Perko, D. Zigon, and E. Heath, “Fluorouracil in the environment: Analysis, occurrence, degradation and transformation,” J. Chromatogr. A, 1290, 62– 72, 2013.
  • [7] S. Zhan, Q. Zhao, S. Chen, J. Wang, Z. Liu, and C. Chen, “Solubility and partition coefficients of 5-Fluorouracil in ScCO2 and ScCO2/Poly(l-lactic acid),” J. Chem. Eng. Data, 59 (4), 1158−1164, 2014.
  • [8] A. Koltsakidou, M. Antonopoulou, E. Evgenidou, I. Konstantinou, A. E. Giannakas, M. Papadaki, D. Bikiaris, and D. A Lambropoulou, “Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: A kinetic and mechanistic study,” Sci. Total Environ., 578, 257−267, 2017.
  • [9] J. Zhang, V. W. C. Chang, A. Giannis, and J-Y. Wang, “Removal of cytostatic drugs from aquatic environment: a review,” Sci. Total Environ., 445–446, 281–298, 2013.
  • [10] I. Ali, M. Asim, and T.A. Khan, “Low cost adsorbents for the removal of organic pollutants from wastewater,” J. Environ. Manag., 113, 170–183, 2012.
  • [11] N. Sivarajasekar, and R. Baskar, “Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review,” J. Chem. Pharm. Res., 7 (9), 737–748, 2015.
  • [12] Y. Zhou, L. Zhang and Z. Cheng, “Removal of organic pollutants from aqueous solution using agricultural wastes: A review,” J. Mol. Liq., 212, 739–762, 2015.
  • [13] M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, and Y. S. Ok, “Biochar as a sorbent for contaminant management in soil and water: A review,” Chemosphere, 99, 19–33, 2014.
  • [14] C. Wang, and H. Wang, “Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles,” Chemosphere, 192, 1–4, 2018.
  • [15] W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D. C. W. Tsang, Y. S. Ok, and B. Gao, “Biochar technology in wastewater treatment: A critical review,” Chemosphere, 252, 126539, 2020.
  • [16] J.N. Sahu, J. Acharya, and B.C. Meikap, “Response surface modeling and optimization of chromium(VI) removal from aqueous solution using tamarind wood activated carbon in batch process,” J. Hazard. Mater., 172 (2-3), 818–825, 2009.
  • [17] Z. Alam, S.A. Muyibi, and J. Toramae, “Statistical optimization of adsorption processes for removal of 2 4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches,” J. Environ. Sci., 19 (6), 674–677, 2007.
  • [18] K. P. Singh, S. Gupta, A. K. Singh, and S. Sinha, “Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach,” J. Hazard. Mater., 186 (2-3), 1462–1473, 2011.
  • [19] F. N. Çatlıoğlu, S. Akay, B. Gözmen, E. Turunc, I. Anastopoulos, B. Kayan, and D. Kalderis, “Fe‑modified hydrochar from orange peel as adsorbent of food colorant Brilliant Black: process optimization and kinetic studies,” Int. J. Environ. Sci. Technol., 17, 1975–1990, 2020.
  • [20] D. Kalderis, B. Kayan, S. Akay, Esra Kulaksız, and B. Gözmen, “Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: Process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste,” J. Environ. Chem. Eng., 5 (3), 2222-2231, 2017.
  • [21] L. Ioannou-Ttofa, and D. Fatta-Kassinos, “Cytostatic drug residues in wastewater treatment plants: Sources, removal efficiencies and current challenges,” in Fate and Effects of Anticancer Drugs in the Environment, E. Heath, M. Isidori, T. Kosjek, and M. Filipič, Eds. Switzerland: Springer, Cham, 2020, pp. 103-138.
  • [22] L. Kovalova, D. R. U. Knappe, K. Lehnberg, C. Kazner, and J. Hollender, “Removal of highly polar micropollutants from wastewater by powdered activated carbon” Environ. Sci. Pollut. Res., 20, 3607–3615, 2013.
  • [23] M. Klavarioti, D. Mantzavinos and D. Kassinos, “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes,” Environ. Int., 35 (2), 402–417, 2009.
  • [24] S. Zhu, X. Huang, F. Ma, L. Wang, X. Duan, and S. Wang, “Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms,” Environ. Sci. Technol., 52 (15), 8649–8658, 2018.
  • [25] S. Meyer, B. Glaser, and P. Quicker, “Technical, economical and climate related aspects of biochar production technologies: a literature review,” Environ. Sci. Technol., 45 (22), 9473–9483, 2011.
  • [26] G. Newcombe, R. Hayes, and M. Drikas, “Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics,” Colloids Surf. A Physicochem. Eng. Asp., 78, 65–71, 1993.
  • [27] A. Khataee, B. Kayan, D. Kalderis, A. Karimi, S. Akay, and M. Konsolakis, “Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar,” Ultrason. Sonochem., 35, 72–80, 2017.
  • [28] A. R. Bagheri, M. Ghaedi, A. Asfaram, A. A. Bazrafshan, and R. Jannesar, “Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology,” Ultrason. Sonochem., 34, 294–304, 2017.
  • [29] H. J. Bachmann, T. D. Bucheli, A. Dieguez-Alonso, D. Fabbri, H. Knicker, H. P. Schmidt, et al., “Toward the standardization of biochar analysis: The COST action TD1107 interlaboratory comparison,” J. Agric. Food Chem., 64 (2), 513–527, 2016.
  • [30] G. N. Kasozi, A. R. Zimmerman, P. Nkedi-Kizza, and B. Gao, “Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars),” Environ. Sci. Technol., 44 (16), 6189–6195, 2010.
  • [31] V. Merino, A. López, Y. Kalia, and R. Guy, “Electrorepulsion versus electroosmosis: effect of pH on the iontophoretic flux of 5-Fluorouracil,” Pharm. Res., 16 (5), 758–761, 1999.
  • [32] K. Sun, M. Keiluweit, M. Kleber, Z. Pan, and B. Xing, “Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure,” Bioresour. Technol.,” 102 (21), 9897–9903, 2011.
  • [33] M. Teixido, J. J. Pignatello, J. L. Beltran, M. Granados, and J. Peccia, “Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar),” Environ. Sci. Technol., 45 (23), 10020–10027, 2011.
  • [34] M. Inyang, and E. Dickenson, “The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review,” Chemosphere, 134, 232–240, 2015.
  • [35] X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang, “Application of biochar for the removal of pollutants from aqueous solutions,” Chemosphere, 125, 70–85, 2015.
  • [36] S. Y. Oh, J. G. Son, and P. C. Chiu, “Biochar-mediated reductive transformation of nitro herbicides and explosives,” Environ. Toxicol. Chem., 32 (3), 501–508, 2013.
  • [37] M. Şener, B. Kayan, S. Akay, B. Gözmen, and D. Kalderis, “Fe-modified sporopollenin as a composite biosorbent for the removal of Pb2+ from aqueous solutions,” Desal. Wat. Treat., 3994, 1–19, 2016.
  • [38] M. Dastkhoon, M. Ghaedi, A. Asfaram, A. Goudarzi, S. M. Langroodi, I. Tyagi, S. Agarwal, and V. K. Gupta, “Ultrasound assisted adsorption of malachite green dye onto ZnS:Cu- NP-AC: equilibrium isotherms and kinetic studies – response surface optimization,” Sep. Purif. Technol., 156 (2), 780–788, 2015.
  • [39] I. Šafařik, Z. Maděrova, K. Pospišková, H.-P. Schmidt, E. Baldiková, J. Filip, M. Křížek, O. Malina, and M. Šafaříková, “Magnetically modified biochar for organic xenobiotics removal,” Water Sci. Technol., 74 (7), 1706–1715, 2016.
  • [40] A. A. Farghali, M. Bahgat, A. Enaiet Allah, and M. H. Khedr, “Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures,” Beni-Suef Univ. J. Basic Appl. Sci., 2 (2), 61–71, 2013.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Makaleler
Authors

Sema Akay 0000-0001-8887-6653

Publication Date November 29, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

IEEE S. Akay, “Ultrasonik Ortamda Biyokömür Kullanarak Sulu Çözeltiden 5-Florourasilin Giderilmesi: Yanıt Yüzey Modellemesi ve Optimizasyonu”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 2, pp. 264–286, 2020, doi: 10.29233/sdufeffd.800157.