CMS HF Dedektöründe Kullanılan Fiberlerin Radyasyondan Gördüğü Zararı Görüntüleme Sistemi
Year 2020,
Volume: 15 Issue: 2, 307 - 318, 29.11.2020
Yalçın Güler
Abstract
İleri Hadron (HF) dedektörü, Compact Muon Solenoid (CMS) deneyinin her iki yanında bulunup, CMS'nin çok ileri bölgedeki pseudorapidite (3.0 < | η | < 5.0) aralığını kapsar. Her bir HF modülü, demir soğurucuların uzunluğu boyunca ışın demeti eksenine paralel uzanan kuvars liflerinden yapılmıştır. HF, ışın eksenine yakın olduğu için yüksek düzeyde radyasyona maruz kalır. Ve yüksek radyasyon etkisi nedeniyle, kuvars fiberler zamanla bozulmaya başlar. Bu radyasyon etkisini belirlemek için HF detektörüne bazı özel fiberler yerleştirilmiştir. Radyasyonun neden olduğu hasarı izlemek için toplam 56 fiber kanalı kullanılmıştır. Bu çalışma, HF'nin radyasyon hasarının izlenmesi için 2010 yılı çalışma döneminde alınan yerel lazer verileri kullanılarak yapılmıştır. Belirli bir pseudorapidite ve azimutal açıda RadDam kanallarında önemli bir radyasyon hasarı gözlenmemiştir.
Supporting Institution
Türkiye Atom Enerjisi Kurumu (TAEK)
Thanks
Tez çalışmamı CERN’ de bulunarak tamamlamamı ve yaptığım çalışmaları desteklemelerinden dolayı TAEK’e (Türkiye Atom Enerjisi Kurumu) ve Çukurova Üniversitesi Fizik Bölümü Proje yürütücüsü Prof. Dr. Gülsen Önengüt’e çok teşekkür ederim. Yaptığım çalışmalarımda desteğini, yardımını ve tavsiyelerini daima yanımda bulduğum değerli hocam Prof. Dr. İsa Dumanoğlu’na çok teşekkür ederim.
References
- R. Oerter “The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics,” (Kindle ed.), Penguin Group p. 2. ISBN 0-13-236678-9.
- G. Aad, “The ATLAS Experiment at the CERN Large Hadron Collider”. Journal of Instrumentation (3), 08, p. S08003, 2008.
- K. Aamodt, “The ALICE experiment at the CERN LHC,”. Journal of Instrumentation (3), 08, p. S08002 2008.
- R. Aaij, “LHCb Detector Performance,” Int. J. Mod. Phys. 30, 07 1530022, 2015.
- S. Chatrchyan, “The CMS experiment at the CERN LHC,” JINST 3 S08004, 2008.
- G. L. Bayatiyan, “CMS Hadronic Calorimeter Project Technical Design Report,” CERN/LHCC-97-31 1997b.
- CMS-HCAL Collaboration, “Design Performance and Calibration of the CMS Forward Calorimeter Wedges,” Eur. Phys. J. C 53
139-166, 2008.
- The CMS Collaboration, “Technical Proposal,” CERN/LHCC94–39 1994.
- The CMS Collaboration,“The Hadron Calorimeter Project Technical Design Report,” CERN/LHCC97–31 1997.
- B. Bilki and Y. Onel, "Design, Construction and Commissioning of the Upgrade Radiation Damage Monitoring System of the CMS Hadron Forward Calorimeters," 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 2018, pp. 1-4,
- A.Penzo, Y. Onel, “The CMS-HF quartz fiber calorimeters,” Journal of Physics: Conference Series,160, 2009, 012014
- A.Ferrando et al., “A compensating quartz fiber calorimeter for small angle calorimetry at the LHC”, Nucl.Instr.Meth. A390,1997, 63.
- U. Akgun and Y. Onel, “Radiation-Hard Quartz Cerenkov Calorimeters”, AIP Conference Proceedings of XII International Conference on Calorimetry in High Energy Physics, 2006, pp 282.
- J. P. Merlo and K. Cankocak, “Radiation Hardness Studies of high OH-Content Quartz Fibers Irradiated with 24 GeV Protons,” Proceedings of 9th ICATTP Conference, World Scientific, 2006, 838.
- N. Akchurin, “Test beam results of CMS quartz fibre calorimeter prototype and simulation of response to high energy hadron jets”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593-597, 1998.
- P. Gorodetzky, “Quartz fiber calorimetry”, Nucl. Instr. Meth. A 361, 1995.
- K. Cankocak, “Radiation-hardness measurements of high OH-content quartz fibres irradiated with 24 GeV protons up to 1.25 Grad”, Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 585, p 20-27, 2008.
- I. Dumanoglu, et al., “Radiation-hardness studies of high OH content quartz fibers irradiated with 500 MeV electrons”. Nucl. Instrum. Methods Phys. Res., A 490, 444-455, 2002.
- J. Freeman, “Innovations for the CMS HCAL”. Fermilab, MS 205, Batavia, IL 60510-500, USA, 2010
- Y. GULER, “CMS HF Dedektöründe Kullanılan Fiberlerin Radyasyondan Gördüğü Zararı Görüntüleme Sistemi,” Yüksek Lisans Tezi, Fen Billimleri Enstitüsü, Çukurova Üniversitesi, Adana Türkiye, 2011.
- The CMS collaboration, “Performance of the CMS missing transversemomentum reconstruction in pp data at√s=8TeV,” Journal of Instrumentation, 10, 2015.
- The CMS collaboration, “Missing transverse energy performance of theCMS detector,” Journal of Instrumentation, 6, 2011.
- C. W. Fabjan, T. Ludlam, “Calorimetry in High-Energy Physics,” Annual Review of Nuclear and Particle Science, 32, pp 335-389, 1982.
- V. V. Abramov, “Studies of the response of the prototype CMS hadron calorimeter, including magnetic field effects, to pion, electron, and muon beams,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457, 1–2, 75-100, 2001.
- E. Hazen, “Radioactive source calibration technique for the CMS hadron calorimeter,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 511, 3, 311-327, 2003.
Radiation Damage Monitoring for The CMS HF Detector
Year 2020,
Volume: 15 Issue: 2, 307 - 318, 29.11.2020
Yalçın Güler
Abstract
Hadronic Forward (HF) detector is located on both sides of the CMS experiment and it covers the very forward angles of CMS, in the pseudorapidity range (3.0 < | η | < 5.0). Each HF module is made of quartz fibers running parallel to the beam axis along the length of the iron absorbers. Since HF is close to the beam axis, it is exposed to high levels of radiation. And due to the high radiation effect, quartz fibers begin to deteriorate over time. Some special fibers were placed in the HF detector to determine this radiation effect. A total of 56 sampling fibers are used to monitor the damage caused by radiation. This study is performed using the local laser data which was collected in 2010 run period for monitoring of radiation damage of HF. No significant radDam is observed in channels at a given pseudorapidity and azimuthal angle.
References
- R. Oerter “The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics,” (Kindle ed.), Penguin Group p. 2. ISBN 0-13-236678-9.
- G. Aad, “The ATLAS Experiment at the CERN Large Hadron Collider”. Journal of Instrumentation (3), 08, p. S08003, 2008.
- K. Aamodt, “The ALICE experiment at the CERN LHC,”. Journal of Instrumentation (3), 08, p. S08002 2008.
- R. Aaij, “LHCb Detector Performance,” Int. J. Mod. Phys. 30, 07 1530022, 2015.
- S. Chatrchyan, “The CMS experiment at the CERN LHC,” JINST 3 S08004, 2008.
- G. L. Bayatiyan, “CMS Hadronic Calorimeter Project Technical Design Report,” CERN/LHCC-97-31 1997b.
- CMS-HCAL Collaboration, “Design Performance and Calibration of the CMS Forward Calorimeter Wedges,” Eur. Phys. J. C 53
139-166, 2008.
- The CMS Collaboration, “Technical Proposal,” CERN/LHCC94–39 1994.
- The CMS Collaboration,“The Hadron Calorimeter Project Technical Design Report,” CERN/LHCC97–31 1997.
- B. Bilki and Y. Onel, "Design, Construction and Commissioning of the Upgrade Radiation Damage Monitoring System of the CMS Hadron Forward Calorimeters," 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 2018, pp. 1-4,
- A.Penzo, Y. Onel, “The CMS-HF quartz fiber calorimeters,” Journal of Physics: Conference Series,160, 2009, 012014
- A.Ferrando et al., “A compensating quartz fiber calorimeter for small angle calorimetry at the LHC”, Nucl.Instr.Meth. A390,1997, 63.
- U. Akgun and Y. Onel, “Radiation-Hard Quartz Cerenkov Calorimeters”, AIP Conference Proceedings of XII International Conference on Calorimetry in High Energy Physics, 2006, pp 282.
- J. P. Merlo and K. Cankocak, “Radiation Hardness Studies of high OH-Content Quartz Fibers Irradiated with 24 GeV Protons,” Proceedings of 9th ICATTP Conference, World Scientific, 2006, 838.
- N. Akchurin, “Test beam results of CMS quartz fibre calorimeter prototype and simulation of response to high energy hadron jets”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593-597, 1998.
- P. Gorodetzky, “Quartz fiber calorimetry”, Nucl. Instr. Meth. A 361, 1995.
- K. Cankocak, “Radiation-hardness measurements of high OH-content quartz fibres irradiated with 24 GeV protons up to 1.25 Grad”, Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 585, p 20-27, 2008.
- I. Dumanoglu, et al., “Radiation-hardness studies of high OH content quartz fibers irradiated with 500 MeV electrons”. Nucl. Instrum. Methods Phys. Res., A 490, 444-455, 2002.
- J. Freeman, “Innovations for the CMS HCAL”. Fermilab, MS 205, Batavia, IL 60510-500, USA, 2010
- Y. GULER, “CMS HF Dedektöründe Kullanılan Fiberlerin Radyasyondan Gördüğü Zararı Görüntüleme Sistemi,” Yüksek Lisans Tezi, Fen Billimleri Enstitüsü, Çukurova Üniversitesi, Adana Türkiye, 2011.
- The CMS collaboration, “Performance of the CMS missing transversemomentum reconstruction in pp data at√s=8TeV,” Journal of Instrumentation, 10, 2015.
- The CMS collaboration, “Missing transverse energy performance of theCMS detector,” Journal of Instrumentation, 6, 2011.
- C. W. Fabjan, T. Ludlam, “Calorimetry in High-Energy Physics,” Annual Review of Nuclear and Particle Science, 32, pp 335-389, 1982.
- V. V. Abramov, “Studies of the response of the prototype CMS hadron calorimeter, including magnetic field effects, to pion, electron, and muon beams,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457, 1–2, 75-100, 2001.
- E. Hazen, “Radioactive source calibration technique for the CMS hadron calorimeter,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 511, 3, 311-327, 2003.