Research Article
BibTex RIS Cite

Difüz Optik Tomografi Sistemlerinde Kullanılan Geri Çatım Algoritmaları için İterasyon Sayısını Belirmede Alternatif Bir Yöntem

Year 2021, Volume: 16 Issue: 1, 246 - 258, 27.05.2021
https://doi.org/10.29233/sdufeffd.925306

Abstract

Difüz Optik Tomografi (DOT) sistemleri optik medikal görüntüleme yöntemlerindendir. DOT sistemlerinin görüntü oluşturma aşaması oldukça önemlidir. Bu çalışma da DOT sisteminde kullanılan iteratif geri çatım algoritmaları için ideal iterasyon sayının literatürdeki metotlara alternatif bir metot ile belirlenebilmesi amaçlanmaktadır. Bu metodun, kontrast-gürültü oranı (Contrast to Noise Ratio, CNR) metoduna benzer bir çalışma prensibi vardır. Bu metodu test edebilmek için MATLAB programı ile simülasyon deneyleri yapılmıştır. Simülasyon verisi oluşturulduktan sonra CNR benzeri iterasyon belirleme algoritması kullanılarak belirlenen iterasyon sayısı ile geri çatım algoritmaları modellenen verinin görüntülerini oluşturmuştur. Bu çalışmada geliştirilen iterasyon belirleme algoritması Kesikli Eşlenik Gradyent (Truncated Conjugate Gradient, TCG), Çift Eşlenik Gradyent (Bi-Conjugate Gradient) ve Transpozu Olmadan Kısmen Minimum Rezidüel (Transpose Free Quasi Minimal Residual, TFQMR) algoritmalarına entegre edilmiştir.

Thanks

Çalışma kapsamında kullanılan MATLAB programları, Akdeniz Üniversitesi, Bilgi İşlem Dairesi Başkanlığı ve Eskişehir Teknik Üniversitesi, Bilgi İşlem Dairesi Başkanlığı tarafından sağlanan lisansa sahiptir. Bu çalışma Gençay SEVİM’ in yüksek lisans tezinden türetilmiştir.

References

  • [1] S. Sabir, S. Cho, D. Heo, K. Hyun Kim, S. Cho, and R. Pua, “Data-specific mask-guided image reconstruction for diffuse optical tomography,” Applied Optics, 59, 9328-9339, 2020.
  • [2] J. Yoo et al., “Deep Learning Diffuse Optical Tomography,” IEEE Transactions on Medical Imaging, 39(4), 877-887, 2020.
  • [3] E. Y. Chae et al., “Development of digital breast tomosynthesis and diffuse optical tomography fusion imaging for breast cancer detection,” Scientific Reports, 10(1), 13127, 2020.
  • [4] A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology, 50(4), R1-43, 2005.
  • [5] D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science, 259(5100), 1463–1466, 1993.
  • [6] B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Physics in Medicine and Biology, 39(7), 1157–1180, 1994.
  • [7] A. Siegel, J. J. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Optics Express, 4(8), 287, 1999.
  • [8] S. L. Jacques, “Optical properties of biological tissues: A review,” Physics in Medicine and Biology, 58(11), R37, 2013.
  • [9] Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” Journal of Biomedical Optics, 21(9), 091312, 2016.
  • [10] R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” Journal of the Optical Society of America A, 11(10), 2727-2741, 1994.
  • [11] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics, 73(7), 076701, 2010.
  • [12] R. J. Gaudette et al., “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Physics in Medicine and Biology, 45(4), 1051, 2000.
  • [13] T. Mercan, G. Sevim, Y. A. Üncü, U. Serkan, H. Ö. Kazancı, and M. Canpolat, “The Comparison of Reconstruction Algorithms for Diffuse Optical Tomography,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14(2), 285–295, 2019.
  • [14] G. Sevim, T. Mercan, Y. A. Uncu, and M. Canpolat, “A new reconstruction technique used in Diffuse Optical Tomography System,” 2017 21st National Biomedical Engineering Meeting (BIYOMUT), IEEE, 2018, pp. i-iv.
  • [15] G. Sevim, “Difüz optik tomografide kullanılan geri çatım tekniğinde görüntü kalitesini arttıracak düzenlemeler yaparak görüntü oluşturma ve elde edilen görüntüleri karşılaştırma,” Y.L. Tezi, Biyofizik ABD. Akdeniz Üniversitesi, Antalya, Türkiye, 2016.
  • [16] P. C. Hansen, “Analysis of Discrete Ill-Posed Problems by Means of the L-Curve,” SIAM Review, 34(4), 561–580, 1992.
  • [17] A. Cultrera and L. Callegaro, “A simple algorithm to find the L-curve corner in the regularisation of ill-posed inverse problems,” IOP SciNotes, 1(2), 025004, 2020.
  • [18] M. H. Gutknecht, A Brief Introduction to Krylov Space Methods for Solving Linear Systems. in Frontiers of Computational Science, Berlin, Heidelberg: Springer, 2007, pp 53-62.
  • [19] R. Fletcher, “Conjugate gradient methods for indefinite systems,” in Numerical analysis, Springer, 1976, pp. 73–89.
  • [20] R. E. Bank and T. F. Chan, “A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems,” Numerical Algorithms, 7, 1–16, 1994.
  • [21] G. Ortega, E. M. Garzón, F. Vázquez, and I. García, “The BiConjugate gradient method on GPUs,” The Journal of Supercomputing, 64(1), 49-58, 2013.
  • [22] R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numerische Mathematik, 60(1), 315-339, 1991.
  • [23] R. W. Freund, “A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems,” SIAM Journal on Scientific Computing, 14(2), 470-482, 1993.

An Alternative Method for Determining the Iteration Number for Reconstruction Algorithms Used in Diffuse Optical Tomography Systems

Year 2021, Volume: 16 Issue: 1, 246 - 258, 27.05.2021
https://doi.org/10.29233/sdufeffd.925306

Abstract

Diffuse Optical Tomography (DOT) systems are optical medical imaging methods. The image reconstruction stage of DOT systems is very important. This study is aimed to determine the ideal number of iterations for the iterative reconstruction algorithms used in the DOT system with an alternative to the methods in the literature. This method has a similar working principle to the Contrast to Noise Ratio (CNR) method. In order to test this method, simulation experiments have been carried out with MATLAB. After the simulation data was created, the reconstruction algorithms created the images of the simulated data with the number of iterations determined using the CNR-like iteration determination algorithm. The iteration determination algorithm developed in this study has been integrated into Truncated Conjugate Gradient (TCG), Bi-Conjugate Gradient, and Transpose Free Quasi Minimal Residual (TFQMR) algorithms.

References

  • [1] S. Sabir, S. Cho, D. Heo, K. Hyun Kim, S. Cho, and R. Pua, “Data-specific mask-guided image reconstruction for diffuse optical tomography,” Applied Optics, 59, 9328-9339, 2020.
  • [2] J. Yoo et al., “Deep Learning Diffuse Optical Tomography,” IEEE Transactions on Medical Imaging, 39(4), 877-887, 2020.
  • [3] E. Y. Chae et al., “Development of digital breast tomosynthesis and diffuse optical tomography fusion imaging for breast cancer detection,” Scientific Reports, 10(1), 13127, 2020.
  • [4] A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology, 50(4), R1-43, 2005.
  • [5] D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science, 259(5100), 1463–1466, 1993.
  • [6] B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Physics in Medicine and Biology, 39(7), 1157–1180, 1994.
  • [7] A. Siegel, J. J. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Optics Express, 4(8), 287, 1999.
  • [8] S. L. Jacques, “Optical properties of biological tissues: A review,” Physics in Medicine and Biology, 58(11), R37, 2013.
  • [9] Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” Journal of Biomedical Optics, 21(9), 091312, 2016.
  • [10] R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, “Boundary conditions for the diffusion equation in radiative transfer,” Journal of the Optical Society of America A, 11(10), 2727-2741, 1994.
  • [11] T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Reports on Progress in Physics, 73(7), 076701, 2010.
  • [12] R. J. Gaudette et al., “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Physics in Medicine and Biology, 45(4), 1051, 2000.
  • [13] T. Mercan, G. Sevim, Y. A. Üncü, U. Serkan, H. Ö. Kazancı, and M. Canpolat, “The Comparison of Reconstruction Algorithms for Diffuse Optical Tomography,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 14(2), 285–295, 2019.
  • [14] G. Sevim, T. Mercan, Y. A. Uncu, and M. Canpolat, “A new reconstruction technique used in Diffuse Optical Tomography System,” 2017 21st National Biomedical Engineering Meeting (BIYOMUT), IEEE, 2018, pp. i-iv.
  • [15] G. Sevim, “Difüz optik tomografide kullanılan geri çatım tekniğinde görüntü kalitesini arttıracak düzenlemeler yaparak görüntü oluşturma ve elde edilen görüntüleri karşılaştırma,” Y.L. Tezi, Biyofizik ABD. Akdeniz Üniversitesi, Antalya, Türkiye, 2016.
  • [16] P. C. Hansen, “Analysis of Discrete Ill-Posed Problems by Means of the L-Curve,” SIAM Review, 34(4), 561–580, 1992.
  • [17] A. Cultrera and L. Callegaro, “A simple algorithm to find the L-curve corner in the regularisation of ill-posed inverse problems,” IOP SciNotes, 1(2), 025004, 2020.
  • [18] M. H. Gutknecht, A Brief Introduction to Krylov Space Methods for Solving Linear Systems. in Frontiers of Computational Science, Berlin, Heidelberg: Springer, 2007, pp 53-62.
  • [19] R. Fletcher, “Conjugate gradient methods for indefinite systems,” in Numerical analysis, Springer, 1976, pp. 73–89.
  • [20] R. E. Bank and T. F. Chan, “A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems,” Numerical Algorithms, 7, 1–16, 1994.
  • [21] G. Ortega, E. M. Garzón, F. Vázquez, and I. García, “The BiConjugate gradient method on GPUs,” The Journal of Supercomputing, 64(1), 49-58, 2013.
  • [22] R. W. Freund and N. M. Nachtigal, “QMR: a quasi-minimal residual method for non-Hermitian linear systems,” Numerische Mathematik, 60(1), 315-339, 1991.
  • [23] R. W. Freund, “A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems,” SIAM Journal on Scientific Computing, 14(2), 470-482, 1993.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Gençay Sevim 0000-0002-2157-3209

Yiğit Ali Üncü 0000-0001-7398-9540

Murat Canpolat 0000-0003-3298-9725

Publication Date May 27, 2021
Published in Issue Year 2021 Volume: 16 Issue: 1

Cite

IEEE G. Sevim, Y. A. Üncü, and M. Canpolat, “Difüz Optik Tomografi Sistemlerinde Kullanılan Geri Çatım Algoritmaları için İterasyon Sayısını Belirmede Alternatif Bir Yöntem”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 1, pp. 246–258, 2021, doi: 10.29233/sdufeffd.925306.