Research Article
BibTex RIS Cite

The Electronic and Structural Properties of NaxSy Nanoclusters

Year 2022, Volume: 17 Issue: 2, 429 - 437, 25.11.2022
https://doi.org/10.29233/sdufeffd.1089379

Abstract

In this study, the structural and electronic properties of NaxSy (x+y=5) nanoclusters were investigated by density functional theory (DFT). Na-S is a material with potential in battery technologies. Therefore the smallest configurations of Na and S alloys are essential for applications in nanotechnology. Because electronic properties depend on the geometric structure, the minimum energy configurations were presented in detail. The most stable systems were determined as S5 and NaS4. The highest HLG value was obtained for the Na2S3 nanocluster. HLG values decrease with Na and S atom increase in bare clusters. Adding the S atoms to Na clusters or Na atoms to S clusters reduces the HLG values in general. Ionization potential and electron affinity values of clusters were also presented.

Thanks

The numerical calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

References

  • U. Simon, G. Schön, and G. Schmid, “The application of au55 clusters as quantum dots,” Angew. Chem. Int. Ed. Eng., 32 (2), 250– 254, 1993.
  • J. Glanz, “Computer scientists rethink their discipline’s foundations,” Science, 269 (5229), 1363–1364, 1995.
  • G. Schoön and U. Simon, “A fascinating new field in colloid science: small ligand- stabilized metal clusters and possible application in microelectronics,” Colloid Polym Sci, 273 (2), 101–117, 1995.
  • M. Antonietti and C. Göltner, “Superstructures of functional colloids: chemistry on the nanometer scale, ” Angew. Chem. Int. Ed. Eng.,36, 910-928, (1997).
  • R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, 277 (5329), 1078–1081, 1997.
  • V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature,370 (6488), 354–357, 1994.
  • G. Li and R. Jin, “Atomically precise gold nanoclusters as new model catalysts,” Acc. Chem. Res., 46 (8), 1749–1758, 2013.
  • B.Qiao, A.Wang, X.Yang, L.F.Allard, Z.Jiang, Y.Cui, J.Liu, J.Li,and T.Zhang, “Single-atom catalysis of co oxidation using pt 1/feo x,” Nature Chem., 3 (8), 634–641, 2011.
  • S. E. Davis, M. S. Ide, and R. J. Davis, “Selective oxidation of alcohols and aldehydes over supported metal nanoparticles,” Green Chem., 15 (1), 17–45, 2013.
  • A. Abad, P. Concepcion, A. Corma, and H. Garcia, “A collaborative effect between gold and a support induces the selective oxidation of alcohols.” Angew. Chem. Int. Ed., 44 (26), 4066-4069, 2005.
  • H.Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, and T. Zhang, “Feo x-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalised nitroarenes,” Nat. Commun., 5 (1), 1–8, 2014.
  • J. H. Kwak, L. Kovarik, and Janos Szanyi, “Co2 reduction on supported ru/al2o3 catalysts: cluster size dependence of product selectivity,” ACS catalysis, 3 (11), 2449–2455, 2013.
  • M. D. Rossell, F. J. Caparros, I. Angurell, G. Muller, J. Llorca, M. Seco, and O. Rossell, “Magnetite-supported palladium single-atoms do not catalyse the hydrogenation of alkenes, but small clusters do,” Catal. Sci. & Technol., 6 (12), 4081–4085, 2016.
  • J. L. Rao, G. K. Chaitanya, S. Basavaraja, K. Bhanuprakash, and A. Venkataramana, “Density-functional study of Au-Cu binary clusters of small size (n=6): Effect of structure on electronic properties.” J. Mol. Struct.theochem, 803(1-3), 89-93, 2007
  • Y. Kadioglu, “Ultra small fluorine carbon nanoclusters by density functional theory,” J Inno Sci Eng, 5, 162 – 172, 2021.
  • M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 c,” Chem. Lett., 16 (2), 405–408, 1987.
  • J. Nerlov and Ib Chorkendorf, “ Promotion though gas phase induced surface segregation: methanol synthesis from Co, Co2 and H2 over Ni/Cu(100),” Catal. Lett., 54, 171-176, 1998.
  • E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal et al., “The siesta method; developments and applicability,” J. Phys.: Condens. Matter, 20 (6), 064208, 2008.
  • Y. Kadioglu, O. Üzengi Aktürk, and M. Tomak, “Electronic and geometric structure of au x cu y clusters studied by density functional theory,” Int. J. Mod. Phys C, 25 (6), 1450011, 2014.
  • J. Y. Lu, Q. S. Jiang, and L. Qin, “The research on energy-storaged application of na/s battery,” Adv. Mat. Res., 443, 189–192, 2012
  • X. Lu, B. W. Kirby, W. Xu, G. Li, J. Y. Kim, J. P. Lemmon, V. L. Sprenkle, and Z. Yang, “Advanced intermediate-temperature na–s battery,” Energy Environ. Sci., 6 (1), 299–306, 2013.
  • Y.-X. Wang, S.-L. Chou, H.-K. Liu, and S.-X. Dou, “Reduced graphene oxide with superior cycling stability and rate capability for sodium storage,” Carbon, 57, 202–208, 2013.
  • J. Wang, J. Yang, Y. Nuli, and R. Holze, “Room temperature na/s batteries with sulfur composite cathode materials,” Electrochem. Commun., 9 (1), 31–34, 2007.
  • M. Masedi, P. Ngoepe, and H. Sithole, “Beyond lithium-ion batteries: A computational study on na-s and na-o batteries,” IOP Conf. Ser.: Mater. Sci. Eng., 169 (1), 012001, 2017.
  • G. Nikiforidis, M. Van de Sanden, and M. N. Tsampas, “High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives,” RSC Adv., 9 (10), 5649–5673, 2019.
  • K. B. Hueso, M. Armand, and T. Rojo, “High-temperature sodium batteries: status, challenges and future trends,” Energy Environ. Sci., 6 (3), 734–749, 2013.
  • B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical energy storage for the grid: a battery of choices,” Science, 334 (6058), 928–935, 2011.
  • J. B. Goodenough and K.-S. Park, “The Li-ion rechargeable battery: a perspective,” J. Am. Chem.Soc., 135 (4), 1167–1176, 2013.
  • T. Yang, B. Guo, W. Du, M. K. Aslam, M. Tao, W. Zhong, Y. Chen, S.-J. Bao, X. Zhang, and M. Xu, “Design and construction of sodium polysulfides defense system for room-temperature na–s battery,” Adv. Sci., 6 (23), 1901557, 2019.
  • T. H. Hwang, D. S. Jung, J.-S. Kim, B. G. Kim, and J. W. Choi, “One-dimensional carbon-sulfur composite fibers for na–s rechargeable batteries operating at room temperature,” Nano Lett., 13 (9), 4532–4538, 2013.
  • J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, “The siesta method for ab initio order-n materials simulation,” J. Phys.: Condens. Matter., 14 (11), 2745, 2002.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77 (18), 3865, 1996.
  • C. G. Broyden, “The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations,” IMA J. Appl. Math., 6 (1),76-90, 1970.
  • C. G. Broyden, “The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm”, IMA J. Appl. Math., 6 (3), 222-231,1970.
  • A. Kokalj, “Xcrysden—a new program for displaying crystalline structures and electron densities,” J. Mol. Graphics and Modell., 17 ( 3-4), 176–179, 1999.
  • R. Steudel, “Properties of sulfur-sulfur bonds,” Angew. Chem. Int. Ed. Eng., 14 (10), 655–664, 1975.
  • W. Li and N. Ye, “Na2[beb2o5],” Acta Crystallogr. Sect E Struct Rep Online, 63 (7), i160, 2007.
  • K. Yang, D. Liu, Y. Sun, Z. Qian, S. Zhong, and R. Wang, “Metal-n4@ graphene as multifunctional anchoring materials for na-s batteries: First-principles study,” Nanomaterials, 11 (5), 1197, 2021.
  • K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure IV constant of diatomic molecules.” Van Nostrand Reinhold Co., 1979.
  • J. Donohue, A. Caron, and E. Goldish, “The crystal and molecular structure of S6(Sulfur-6),” J. Am. Chem. Soc., 83 (18), 3748- 3751, 1961
  • M. D. Chen, M. L. Liu, H. B. Luo, Q. E. Zhang, and C. T. Au, “Geometric structures and structural stabilities of neutral sulfur clusters,” J. Mol. Struct. Theochem., 548 (1-3), 133-141, 2001.
  • Y. Jin, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, J. Lv, C. Zhang, and M. Ju, “Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: S_n^Q (n=3-20,Q=±1),” Phys. Chem. Chem. Phys., 17, 13590-13597, 2015.
  • P. Kharchenko, J. F. Babb, and A. Dalgarno, “Long-range interactions of sodium atoms,” Phys. Rev. A, 55, 3566, 1997.
  • Y. Kadioglu, G. Gökoğlu, and O. Ü. Aktürk, “Adsorption of co and o2 on aumcun clusters: principles first-principles calculations,” Thin Solid Films, 579, 153–166, 2015.

NaxSy Nanokümelerinin Elektronik ve Yapısal Özellikleri

Year 2022, Volume: 17 Issue: 2, 429 - 437, 25.11.2022
https://doi.org/10.29233/sdufeffd.1089379

Abstract

Bu çalışmada, NaxSy (x+y=5) nanokümelerinin yapısal ve elektronik özellikleri yoğunluk fonksiyonel teorisi (DFT) ile araştırılmıştır. Na-S, pil teknolojilerinde potansiyeli olan bir malzemedir. Bu nedenle Na ve S alaşımlarının en küçük konfigürasyonları nanoteknolojideki uygulamalar için önemlidir. Elektronik özellikler geometrik yapıya bağlı olduğundan minimum enerji konfigürasyonları detaylı olarak sunulmuştur. En kararlı sistemler S5 ve NaS4 olarak belirlenmiştir. En yüksek HLG değerine Na2S3 nanokümesinin sahip olduğu belirlenmiştir. Saf elementlerden oluşan kümelerde Na ve S atomunun artmasıyla HLG değerlerinin azaldığı görülmüştür. Na kümelerine, S atomlarının veya S kümelerine, Na atomlarının eklenmesi genel olarak HLG değerlerini azalma meydana gelmiştir. Ayrıca kümelerin iyonlaşma potansiyeli ve elektron afinite değerleri de sunulmuştur.

References

  • U. Simon, G. Schön, and G. Schmid, “The application of au55 clusters as quantum dots,” Angew. Chem. Int. Ed. Eng., 32 (2), 250– 254, 1993.
  • J. Glanz, “Computer scientists rethink their discipline’s foundations,” Science, 269 (5229), 1363–1364, 1995.
  • G. Schoön and U. Simon, “A fascinating new field in colloid science: small ligand- stabilized metal clusters and possible application in microelectronics,” Colloid Polym Sci, 273 (2), 101–117, 1995.
  • M. Antonietti and C. Göltner, “Superstructures of functional colloids: chemistry on the nanometer scale, ” Angew. Chem. Int. Ed. Eng.,36, 910-928, (1997).
  • R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, 277 (5329), 1078–1081, 1997.
  • V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature,370 (6488), 354–357, 1994.
  • G. Li and R. Jin, “Atomically precise gold nanoclusters as new model catalysts,” Acc. Chem. Res., 46 (8), 1749–1758, 2013.
  • B.Qiao, A.Wang, X.Yang, L.F.Allard, Z.Jiang, Y.Cui, J.Liu, J.Li,and T.Zhang, “Single-atom catalysis of co oxidation using pt 1/feo x,” Nature Chem., 3 (8), 634–641, 2011.
  • S. E. Davis, M. S. Ide, and R. J. Davis, “Selective oxidation of alcohols and aldehydes over supported metal nanoparticles,” Green Chem., 15 (1), 17–45, 2013.
  • A. Abad, P. Concepcion, A. Corma, and H. Garcia, “A collaborative effect between gold and a support induces the selective oxidation of alcohols.” Angew. Chem. Int. Ed., 44 (26), 4066-4069, 2005.
  • H.Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, and T. Zhang, “Feo x-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalised nitroarenes,” Nat. Commun., 5 (1), 1–8, 2014.
  • J. H. Kwak, L. Kovarik, and Janos Szanyi, “Co2 reduction on supported ru/al2o3 catalysts: cluster size dependence of product selectivity,” ACS catalysis, 3 (11), 2449–2455, 2013.
  • M. D. Rossell, F. J. Caparros, I. Angurell, G. Muller, J. Llorca, M. Seco, and O. Rossell, “Magnetite-supported palladium single-atoms do not catalyse the hydrogenation of alkenes, but small clusters do,” Catal. Sci. & Technol., 6 (12), 4081–4085, 2016.
  • J. L. Rao, G. K. Chaitanya, S. Basavaraja, K. Bhanuprakash, and A. Venkataramana, “Density-functional study of Au-Cu binary clusters of small size (n=6): Effect of structure on electronic properties.” J. Mol. Struct.theochem, 803(1-3), 89-93, 2007
  • Y. Kadioglu, “Ultra small fluorine carbon nanoclusters by density functional theory,” J Inno Sci Eng, 5, 162 – 172, 2021.
  • M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 c,” Chem. Lett., 16 (2), 405–408, 1987.
  • J. Nerlov and Ib Chorkendorf, “ Promotion though gas phase induced surface segregation: methanol synthesis from Co, Co2 and H2 over Ni/Cu(100),” Catal. Lett., 54, 171-176, 1998.
  • E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera, R. M. Martin, P. Ordejon, J. M. Pruneda, D. Sanchez-Portal et al., “The siesta method; developments and applicability,” J. Phys.: Condens. Matter, 20 (6), 064208, 2008.
  • Y. Kadioglu, O. Üzengi Aktürk, and M. Tomak, “Electronic and geometric structure of au x cu y clusters studied by density functional theory,” Int. J. Mod. Phys C, 25 (6), 1450011, 2014.
  • J. Y. Lu, Q. S. Jiang, and L. Qin, “The research on energy-storaged application of na/s battery,” Adv. Mat. Res., 443, 189–192, 2012
  • X. Lu, B. W. Kirby, W. Xu, G. Li, J. Y. Kim, J. P. Lemmon, V. L. Sprenkle, and Z. Yang, “Advanced intermediate-temperature na–s battery,” Energy Environ. Sci., 6 (1), 299–306, 2013.
  • Y.-X. Wang, S.-L. Chou, H.-K. Liu, and S.-X. Dou, “Reduced graphene oxide with superior cycling stability and rate capability for sodium storage,” Carbon, 57, 202–208, 2013.
  • J. Wang, J. Yang, Y. Nuli, and R. Holze, “Room temperature na/s batteries with sulfur composite cathode materials,” Electrochem. Commun., 9 (1), 31–34, 2007.
  • M. Masedi, P. Ngoepe, and H. Sithole, “Beyond lithium-ion batteries: A computational study on na-s and na-o batteries,” IOP Conf. Ser.: Mater. Sci. Eng., 169 (1), 012001, 2017.
  • G. Nikiforidis, M. Van de Sanden, and M. N. Tsampas, “High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives,” RSC Adv., 9 (10), 5649–5673, 2019.
  • K. B. Hueso, M. Armand, and T. Rojo, “High-temperature sodium batteries: status, challenges and future trends,” Energy Environ. Sci., 6 (3), 734–749, 2013.
  • B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical energy storage for the grid: a battery of choices,” Science, 334 (6058), 928–935, 2011.
  • J. B. Goodenough and K.-S. Park, “The Li-ion rechargeable battery: a perspective,” J. Am. Chem.Soc., 135 (4), 1167–1176, 2013.
  • T. Yang, B. Guo, W. Du, M. K. Aslam, M. Tao, W. Zhong, Y. Chen, S.-J. Bao, X. Zhang, and M. Xu, “Design and construction of sodium polysulfides defense system for room-temperature na–s battery,” Adv. Sci., 6 (23), 1901557, 2019.
  • T. H. Hwang, D. S. Jung, J.-S. Kim, B. G. Kim, and J. W. Choi, “One-dimensional carbon-sulfur composite fibers for na–s rechargeable batteries operating at room temperature,” Nano Lett., 13 (9), 4532–4538, 2013.
  • J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, “The siesta method for ab initio order-n materials simulation,” J. Phys.: Condens. Matter., 14 (11), 2745, 2002.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., 77 (18), 3865, 1996.
  • C. G. Broyden, “The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations,” IMA J. Appl. Math., 6 (1),76-90, 1970.
  • C. G. Broyden, “The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm”, IMA J. Appl. Math., 6 (3), 222-231,1970.
  • A. Kokalj, “Xcrysden—a new program for displaying crystalline structures and electron densities,” J. Mol. Graphics and Modell., 17 ( 3-4), 176–179, 1999.
  • R. Steudel, “Properties of sulfur-sulfur bonds,” Angew. Chem. Int. Ed. Eng., 14 (10), 655–664, 1975.
  • W. Li and N. Ye, “Na2[beb2o5],” Acta Crystallogr. Sect E Struct Rep Online, 63 (7), i160, 2007.
  • K. Yang, D. Liu, Y. Sun, Z. Qian, S. Zhong, and R. Wang, “Metal-n4@ graphene as multifunctional anchoring materials for na-s batteries: First-principles study,” Nanomaterials, 11 (5), 1197, 2021.
  • K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure IV constant of diatomic molecules.” Van Nostrand Reinhold Co., 1979.
  • J. Donohue, A. Caron, and E. Goldish, “The crystal and molecular structure of S6(Sulfur-6),” J. Am. Chem. Soc., 83 (18), 3748- 3751, 1961
  • M. D. Chen, M. L. Liu, H. B. Luo, Q. E. Zhang, and C. T. Au, “Geometric structures and structural stabilities of neutral sulfur clusters,” J. Mol. Struct. Theochem., 548 (1-3), 133-141, 2001.
  • Y. Jin, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, J. Lv, C. Zhang, and M. Ju, “Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: S_n^Q (n=3-20,Q=±1),” Phys. Chem. Chem. Phys., 17, 13590-13597, 2015.
  • P. Kharchenko, J. F. Babb, and A. Dalgarno, “Long-range interactions of sodium atoms,” Phys. Rev. A, 55, 3566, 1997.
  • Y. Kadioglu, G. Gökoğlu, and O. Ü. Aktürk, “Adsorption of co and o2 on aumcun clusters: principles first-principles calculations,” Thin Solid Films, 579, 153–166, 2015.
There are 44 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Eşe Akpınar 0000-0003-0632-2150

Publication Date November 25, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

IEEE E. Akpınar, “The Electronic and Structural Properties of NaxSy Nanoclusters”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 429–437, 2022, doi: 10.29233/sdufeffd.1089379.