Research Article
BibTex RIS Cite

Poli(2-Okso-2-Feniletil -2-Amino Benzoat)/Bentonit Nanokompozitinin Sentezi, Karakterizasyonu ve Elektrik İletkenliğinin İncelenmesi

Year 2022, Volume: 17 Issue: 2, 568 - 576, 25.11.2022
https://doi.org/10.29233/sdufeffd.1148894

Abstract

Bu çalışma iki aşamada gerçekleştirilmiştir. İlk aşamada; bir anilin türevi olan 2-okso-2-feniletil-2-aminobenzoat (OPA) bileşiği uygun bileşenlerden başlanarak sentezlenmiştir. Daha sonra OPA’nın başlatıcı olarak amonyum peroksidisülfat (APS) ve çözücü olarak DMF varlığında kimyasal polimerleşmesi sonucu poli (OPA) elde edilmiştir. Poli(OPA)/Bentonit (BNT), BNT’in inorganik tabakalarının poli(OPA) matrisinde interkalasyon yöntemi ile etkin bir şekilde dağıtılmasıyla sentezlenmiştir. İkinci aşamada ise sentezlenen OPA, poli(OPA) ve poli(OPA)/BNT nanokompozitin karakterizasyonu incelenmiştir. OPA, sıvı kromatografi kütle spektrometresi (LC/TOF-MS) kullanılarak karakterize edilmiştir. Poli(OPA) ve poli(OPA)/BNT nanokompozitinin yapıları Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR), termal gravimetrik analiz (TGA) ve taramalı elektron mikroskobu (SEM) kullanılarak karakterize edilmiştir. Ayrıca poli(OPA)/BNT nanokompozinin iletkenliği araştırılmış ve elektriksel iletkenliğindeki değişim incelenmiştir.

References

  • H. Randriamahazaka, V. Noel, S. Guillerez, and C. Chevrot, “Interpenetrating Organic Conducting Polymer Composites Based on Polyaniline and Poly(3,4- ethylenedioxythiophene) from Sequential Electropolymerization,” J. Electroanal. Chem., 585, 157-166, 2005.
  • M. S. Rahmanifar, M. S. Mousavi, M. Shamsipur, and M. Ghaemi, “What is the Limiting Factor of the Cycle-Life of Zn-Polyaniline Rechargeable Batteries,” J. Power Sources, 132, 296-301, 2004.
  • K. Luo, X. Guo, N. Shi, and C. Sun, “Synthesis and Characterization of CoreShell Nanocomposites of Polyaniline and Carbon Black,” Synth. Met., 151, 293-296, 2005.
  • W. Pan, S. L. Yang, G. Li, and J. M. Jiang, “Electrical and Structural Analysis of Conductive Polyaniline/Polyacrylonitrile Composites,” Eur. Polym. J., 41, 2127-2133, 2005.
  • A. S. Chen, K. R. Chuang, C. I. Chao, and H. T. Lee, “White Light Emission from Electroluminescence Diode with Polyaniline As the Emitting Layer,” Synth. Met., 82, 207-210, 1996.
  • P. Topart, and P. Hourquebie, “Infrared Switching Electroemissive Devices Based on Highly Conducting Polymers,” Thin Solid Films, 352, 243-248, 1999.
  • A. A. Athawale, S. V. Bhagwat, and P. P. Katre, “Nanocomposite of Pd-polyaniline As a Selective Methanol Sensor,” Sens. Actuators, B., 114, 263-267, 2006.
  • M. M. Ayad, N. Salahuddin, and M. A. Shenashin, “The Optimum HCl Concentration for the In Situ Polyaniline Film Formation,” Synth. Met., 142, 101-106, 2003.
  • W. F. Alves, E. C. Venancio, F. L. Leite, D. H. F. Kanda, L. F. Malmonge, J. A. Malmonge, and L. H. C. Mattoso, “Thermo-analyses of polyaniline and its derivatives,” Thermochim. Acta., 502, 43-46, 2010.
  • S. Wang, Z. Tan, Y. Li, L. Sun, and T. Zhang, “Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites,” Thermochim. Acta., 441, 191-194, 2006.
  • Z. Hu, X. Shang, Y. Yang, C. Kong, and H. Wu, “The Electrochemical Synthesis of Polyaniline/Polysulfone Composite Films and Electrocatalytic Activity for Ascorbic Acid Oxidation,” Electrochimica Acta, 51, 3351-3355, 2006.
  • V. N. Bliznyuk, A. Baig, S. Singamaneni, A. A. Pud, Y. K. Fatyeyeva, and G. S. Shapoval, “Effects of Surface and Volume Modification of Poly(vinylidene fluoride) by Polyaniline on the Structure and Electrical Properties of Their Composites,” Polymer, 46, 11728-11736, 2005.
  • A. O. F. Rossetto, D. S. Vicentini, C. H. Costa, S. P. Melegari, and W. G. Matias, “Synthesis, characterization and toxicological evaluation of a core–shell copper oxide/polyaniline nanocomposite,” Chemosphere, 108, 107-114, 2014.
  • M. Cabuk, Y. Alan, E. İ. Unal, “Enhanced electrokinetic properties and antimicrobial activities ofbiodegradable chitosan/organo-bentonite composites,” Carbohydr. Polym., 161, 71-81, 2017.
  • S. S. Gandhi, K. L. Bell, and M. S. Gibson, “Synthetic Routes to l,5-Dihydro-5-oxo-4,1-benzoxazepines and to 5-Oxooxazolo[3,2-a]quinolines,” Tetrahedron, 51, 13301-13308, 1995.
  • M. Cabuk, T. A. Yesil, M. Yavuz, H. I. Unal, “Colloidal and Electrorheological Properties of Conducting Polyaniline/Bentonite Composite in Silicone Oil Medium,” Curr. Smart Mat., 2, 4-11, 2017.
  • P. Eaksuwanchai, M. Promsawat, S. Jiansirisomboon, A. Watcharapasorn, “Fabrication, Phase, Microstructure and Electrical Properties of BNT-doped (Sr,La)TiO3 Ceramics,” J. Korean Phys. Soc., 65, 3, 377-381, 2014.

Synthesis, Characterization and Investigation of Electrical Conductivity of Poly(2-Oxo-2-Phenyl Ethyl -2-Amino Benzoate)/Bentonite Nanocomposite

Year 2022, Volume: 17 Issue: 2, 568 - 576, 25.11.2022
https://doi.org/10.29233/sdufeffd.1148894

Abstract

This study was carried out in two stages. In the first stage; 2-oxo-2-phenylethyl-2-aminobenzoate (OPA) compound, which was an aniline derivative, was synthesized by starting the appropriate components. Then, poly(OPA) was obtained via chemical polymerization of the OPA in the presence of ammonium peroxydisulfate (APS) as the initiator and DMF as the solvent. Poly(OPA)/Bentonite (BNT) nanocomposite was synthesized by effectively dispersing the inorganic nanolayers of BNT in poly(OPA) matrix by means of intercalation method. In the second stage; the characterization of the synthesized OPA, poly(OPA) and poly(OPA)/BNT nanocomposite was investigated. The OPA was characterized by liquid chromatography mass spectrometry (LC/TOF-MS). The structures of the poly(OPA) and nanocomposite(OPA) were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). In addition, the conductivity of poly(OPA)/BNT nanocomposite was investigated and change in electrical conductivity was examined.

References

  • H. Randriamahazaka, V. Noel, S. Guillerez, and C. Chevrot, “Interpenetrating Organic Conducting Polymer Composites Based on Polyaniline and Poly(3,4- ethylenedioxythiophene) from Sequential Electropolymerization,” J. Electroanal. Chem., 585, 157-166, 2005.
  • M. S. Rahmanifar, M. S. Mousavi, M. Shamsipur, and M. Ghaemi, “What is the Limiting Factor of the Cycle-Life of Zn-Polyaniline Rechargeable Batteries,” J. Power Sources, 132, 296-301, 2004.
  • K. Luo, X. Guo, N. Shi, and C. Sun, “Synthesis and Characterization of CoreShell Nanocomposites of Polyaniline and Carbon Black,” Synth. Met., 151, 293-296, 2005.
  • W. Pan, S. L. Yang, G. Li, and J. M. Jiang, “Electrical and Structural Analysis of Conductive Polyaniline/Polyacrylonitrile Composites,” Eur. Polym. J., 41, 2127-2133, 2005.
  • A. S. Chen, K. R. Chuang, C. I. Chao, and H. T. Lee, “White Light Emission from Electroluminescence Diode with Polyaniline As the Emitting Layer,” Synth. Met., 82, 207-210, 1996.
  • P. Topart, and P. Hourquebie, “Infrared Switching Electroemissive Devices Based on Highly Conducting Polymers,” Thin Solid Films, 352, 243-248, 1999.
  • A. A. Athawale, S. V. Bhagwat, and P. P. Katre, “Nanocomposite of Pd-polyaniline As a Selective Methanol Sensor,” Sens. Actuators, B., 114, 263-267, 2006.
  • M. M. Ayad, N. Salahuddin, and M. A. Shenashin, “The Optimum HCl Concentration for the In Situ Polyaniline Film Formation,” Synth. Met., 142, 101-106, 2003.
  • W. F. Alves, E. C. Venancio, F. L. Leite, D. H. F. Kanda, L. F. Malmonge, J. A. Malmonge, and L. H. C. Mattoso, “Thermo-analyses of polyaniline and its derivatives,” Thermochim. Acta., 502, 43-46, 2010.
  • S. Wang, Z. Tan, Y. Li, L. Sun, and T. Zhang, “Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites,” Thermochim. Acta., 441, 191-194, 2006.
  • Z. Hu, X. Shang, Y. Yang, C. Kong, and H. Wu, “The Electrochemical Synthesis of Polyaniline/Polysulfone Composite Films and Electrocatalytic Activity for Ascorbic Acid Oxidation,” Electrochimica Acta, 51, 3351-3355, 2006.
  • V. N. Bliznyuk, A. Baig, S. Singamaneni, A. A. Pud, Y. K. Fatyeyeva, and G. S. Shapoval, “Effects of Surface and Volume Modification of Poly(vinylidene fluoride) by Polyaniline on the Structure and Electrical Properties of Their Composites,” Polymer, 46, 11728-11736, 2005.
  • A. O. F. Rossetto, D. S. Vicentini, C. H. Costa, S. P. Melegari, and W. G. Matias, “Synthesis, characterization and toxicological evaluation of a core–shell copper oxide/polyaniline nanocomposite,” Chemosphere, 108, 107-114, 2014.
  • M. Cabuk, Y. Alan, E. İ. Unal, “Enhanced electrokinetic properties and antimicrobial activities ofbiodegradable chitosan/organo-bentonite composites,” Carbohydr. Polym., 161, 71-81, 2017.
  • S. S. Gandhi, K. L. Bell, and M. S. Gibson, “Synthetic Routes to l,5-Dihydro-5-oxo-4,1-benzoxazepines and to 5-Oxooxazolo[3,2-a]quinolines,” Tetrahedron, 51, 13301-13308, 1995.
  • M. Cabuk, T. A. Yesil, M. Yavuz, H. I. Unal, “Colloidal and Electrorheological Properties of Conducting Polyaniline/Bentonite Composite in Silicone Oil Medium,” Curr. Smart Mat., 2, 4-11, 2017.
  • P. Eaksuwanchai, M. Promsawat, S. Jiansirisomboon, A. Watcharapasorn, “Fabrication, Phase, Microstructure and Electrical Properties of BNT-doped (Sr,La)TiO3 Ceramics,” J. Korean Phys. Soc., 65, 3, 377-381, 2014.
There are 17 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Makaleler
Authors

Tolga Acar Yeşil 0000-0001-5983-8447

Ömer Dilek 0000-0002-4907-0865

Tahir Tilki 0000-0002-1040-2375

Mustafa Yavuz 0000-0003-4074-973X

Publication Date November 25, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

IEEE T. A. Yeşil, Ö. Dilek, T. Tilki, and M. Yavuz, “Synthesis, Characterization and Investigation of Electrical Conductivity of Poly(2-Oxo-2-Phenyl Ethyl -2-Amino Benzoate)/Bentonite Nanocomposite”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 568–576, 2022, doi: 10.29233/sdufeffd.1148894.