Research Article
BibTex RIS Cite

Examination of the Effects of Level Density Models in Cross-Section Calculations of Some (p,x) Reactions on Natural Palladium

Year 2024, Volume: 19 Issue: 1, 29 - 39, 27.05.2024
https://doi.org/10.29233/sdufeffd.1418644

Abstract

In this study, reaction cross-section calculations of some proton-induced reactions on natPd have been investigated under the effects of level density models. All calculations involving level density models have been done employing the TALYS code’s 1.95 version. TALYS is an open-source software. It gives foresight to the researchers about many parameters of a desired nuclear reaction, one of which is known as cross-section, when it is not possible to perform it due to specific reasons. The TALYS 1.95 code consists of six different level density models, which have all been included in this study. All obtained cross-section results gathered from the utilization of level density models have been compared with available experimental data. The mentioned available experimental data used in this study have been obtained from the International Experimental Nuclear Reaction Data Library (EXFOR) database. A graphical representation of generated calculation results, and available experimental data have been displayed for these comparisons. These graphical representations are also used to point out the most consistent level density model with respect to the experimental data for each reaction investigated in this study. The use of level density models was found to affect the results of cross-sectional calculations.

References

  • C. G. Anderson, L. C. Newman and G. K. Roset, “Platinum Group Metal Bullion Production and Refining”, Mineral Processing Plant Design, Practice and Control Proceedings, Eds. A Mular, D. Halbe, and D. Barrett, Vancouver, British Columbia, October 2002, 1760.
  • R. J. Newman and F. J. Smith. “Platinum metals from nuclear fission”, Platinum Metals Review, 14, 88-92, 1970.
  • Z. Kolarik and V. R. Edouard, “Potential applications of fission platinoids in industry”, Platinum Metals Review, 49, 79-90, 2005.
  • J. R. De Laeter, J. K. Böhlke, P. De Bievre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, “Atomic weights of the elements: review 2000, Pure and Applied Chemistry, 75, 683-800, 2003.
  • B. R. Martin, Nuclear and Particle Physics Department of Physics and Astronomy University College London John Wiley and Sons, Ltd. England 23, 129-136, 2006.
  • S. G. Mashnik, CODE CEM95, Joint Institute for Nuclear Research. Dubna, Moskow, Russia, 1995.
  • M. Herman, R. Capote, M. Sin, A. Trkov, B. V. Carlson, P. Oblozinsky, C. M. Mattoon, H. Wienkey, S. Hoblit, Young–Sik Cho, G. P. A. Nobre, V. Plujko, and V. Zerkin, EMPIRE-3.2 Malta, Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation, 2013.
  • S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, “Geant4-A simulation toolkit”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303, 2003.
  • C. H. M. Broeders, Yu. A. Korovin, A. Yu. Konobeyev, Yu. A. Korovin, M. Blann, Yu. A. Korovin, and V. P. Lunev, “ALICE/ASH - Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies”, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte, 2006.
  • R. Capote, V. Osorio, R. Lopez, E. Herrera, and M. Piris, “Analysis of Experimental Data on Neutron-Induced Reactions and development of code Pcross for the Calculation of Differential Pre-equilibrium Emission Spectra with Modelling of Level Density Function”, Final Report on Research Contract 5472/RB, INDC (CUB)-004, Distr, L., 1991.
  • A. Koning, S. Hilaire, and S. Goriely, “TALYS-1.95, A nuclear reaction program”, NRG-1755 ZG Petten, The Netherlands, 2019.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Astrophysical s-factor calculations under the effects of gamma-ray strength functions for some alpha capture reactions”, Moscow University Physics Bulletin, 75, 585–589, 2020.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Effects of combining some theoretical models in the cross-section calculations of some alpha-induced reactions for natSb”, Applied Radiation and Isotopes, 186, 110255, 2022.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Effects of deuteron optical models on the cross-section calculations of deuteron induced reactions on natural germanium”, Applied Radiation and Isotopes, 176, 109875, 2021.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “Production cross–section and reaction yield calculations for 123-126I isotopes on 123Sb(α,xn) reactions”, Kuwait Journal of Science, 48(2), 1-11, 2021.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(α,x) reactions”, Physics of Atomic Nuclei, 83, 820-827, 2020.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “An investigation of effects of level density models and gamma-ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions”, Radiochimica Acta, 108(1), 11-17, 2020.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon-induced reaction cross–section calculations for the fusion structural materials 46, 50Ti, 51V, 58Ni and 63Cu”, Applied Radiation and Isotopes, 143, 6-10, 2019.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x = 1–3”, Modern Physics Letters, 35(24), 2050202, 2020.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “Photo-neutron cross-section calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with newly obtained giant dipole resonance parameters”, Applied Radiation and Isotopes,165, 109356, 2020.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “S-factor analysis of proton capture reactions on 112,114,116,119Sn and 113,115In isotopes”, Physics of Atomic Nuclei, 82, 324-329, 2019.
  • N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R. A. Forrest, T. Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O. O. Gritzay, M. Herman, S. Hlavač, K. Katō, B. Lalremruata, Y. O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G. Pikulina, V. G. Pronyaev, A. Saxena, O. Schwerer, S. P. Simakov, N. Soppera, R. Suzuki, S. Takács, X. Tao, S. Taova, F. Tárkányi, V. V. Varlamov, J. Wang, S. C. Yang, V. Zerkin and Y. Zhuang, “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC)”, Nuclear Data Sheets, 120, 272-276, 2014.
  • V. V. Zerkin and B. Pritychenko, “The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31-43, 2018.
  • E. Fermi, “Zur Quantelung des idealen einatomigen Gases”, Zeitschrift für Physik, 36, 902-912, 1926.
  • A. Gilbert and A. G. W. Cameron, “A composite nuclear-level density formula with shell corrections”, Canadian Journal of Physics, 43(8), 1446-1496, 1965.
  • A. V. Ignatyuk, K. K. Istekov, G. N. Smirenkin, “Role of the collective effects in a systematics of nuclear level density”, Soviet Journal of Nuclear Physics, 29, 450, 1979.
  • H. Baba, “A shell-model nuclear level density”, Nuclear Physics, 159, 625-641, 1970
  • W. Dilg, W. Schantl, H. Vonach and M. Uhl, “Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250”, Nuclear Physics A, 217(2), 269-298, 1973.
  • A. V. Ignatyuk, G. N. Smirenkin and A. S. Tishin, “Phenomenological description of energy dependence of the level density parameter”, Yadernaya Fizika, 21, 485–490, 1975.
  • A. J. Koning, S. Hilaire and S. Goriely, “Global and local level density models”, Nuclear Physics A, 810(1-4), 13-76, 2008.
  • S. Goriely, S. Hilaire, and A. J. Koning, “Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method”, Physical Review C, 78, 064307, 2008.
  • S. Hilaire, and S. Goriely, “Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications”, Nuclear Physics A, 779, 63-81, 2006.
  • S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, “Temperature-dependent combinatorial level densities with the D1M Gogny force”, Physical Review C, 86, 064317, 2012.
  • F. Tárkányi, F. Ditrói, S. Takács, J. Csikai, A. Hermanne, M. S. Uddin and, M. Baba, “Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV”, Applied Radiation and Isotopes, 114, 128-144, 2016.
  • F. Ditroi, F. Tarkanyi, S. Takacs, I. Mahunka, J. Csikai, A. Hermanne, M. S. Uddin, M. Hagiwara, M. Baba, T. Ido, Yu. Shubin and A.I. Dityuk, “Measurement of activation cross sections of the proton induced nuclear reactions on palladium”, Journal of Radioanalytical and Nuclear Chemistry, 272, 231-235, 2007.
  • V. D. Nguyen, T. L. Nguyen, T. X. Nguyen, T. H. Nguyen, G. N. Kim and K. Kim, “Measurement of cross sections for the formation of 100gRh in natPd(p,x)100m,gRh reactions up to 42.61 MeV”, Journal of Radioanalytical and Nuclear Chemistry, 321, 117-123, 2019.
  • M. U. Khandaker, K. S. Kim, G. N. Kim and N. Otuka, “Cyclotron production of the 105,106mAg, 100,101Pd, 100,101m,105Rh radionuclides by natPd(p,x) nuclear processes”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 2303-2311, 2010.
  • A. Hermanne, S. Takács, F. Tárkányi, and R. Bolbos, “Cross section measurements of proton and deuteron induced formation of 103Ag in natural palladium”, Radiochimica Acta, 92(4-6), 215-218, 2004.
Year 2024, Volume: 19 Issue: 1, 29 - 39, 27.05.2024
https://doi.org/10.29233/sdufeffd.1418644

Abstract

References

  • C. G. Anderson, L. C. Newman and G. K. Roset, “Platinum Group Metal Bullion Production and Refining”, Mineral Processing Plant Design, Practice and Control Proceedings, Eds. A Mular, D. Halbe, and D. Barrett, Vancouver, British Columbia, October 2002, 1760.
  • R. J. Newman and F. J. Smith. “Platinum metals from nuclear fission”, Platinum Metals Review, 14, 88-92, 1970.
  • Z. Kolarik and V. R. Edouard, “Potential applications of fission platinoids in industry”, Platinum Metals Review, 49, 79-90, 2005.
  • J. R. De Laeter, J. K. Böhlke, P. De Bievre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, “Atomic weights of the elements: review 2000, Pure and Applied Chemistry, 75, 683-800, 2003.
  • B. R. Martin, Nuclear and Particle Physics Department of Physics and Astronomy University College London John Wiley and Sons, Ltd. England 23, 129-136, 2006.
  • S. G. Mashnik, CODE CEM95, Joint Institute for Nuclear Research. Dubna, Moskow, Russia, 1995.
  • M. Herman, R. Capote, M. Sin, A. Trkov, B. V. Carlson, P. Oblozinsky, C. M. Mattoon, H. Wienkey, S. Hoblit, Young–Sik Cho, G. P. A. Nobre, V. Plujko, and V. Zerkin, EMPIRE-3.2 Malta, Modular System for Nuclear Reaction Calculations and Nuclear Data Evaluation, 2013.
  • S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, “Geant4-A simulation toolkit”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303, 2003.
  • C. H. M. Broeders, Yu. A. Korovin, A. Yu. Konobeyev, Yu. A. Korovin, M. Blann, Yu. A. Korovin, and V. P. Lunev, “ALICE/ASH - Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies”, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte, 2006.
  • R. Capote, V. Osorio, R. Lopez, E. Herrera, and M. Piris, “Analysis of Experimental Data on Neutron-Induced Reactions and development of code Pcross for the Calculation of Differential Pre-equilibrium Emission Spectra with Modelling of Level Density Function”, Final Report on Research Contract 5472/RB, INDC (CUB)-004, Distr, L., 1991.
  • A. Koning, S. Hilaire, and S. Goriely, “TALYS-1.95, A nuclear reaction program”, NRG-1755 ZG Petten, The Netherlands, 2019.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Astrophysical s-factor calculations under the effects of gamma-ray strength functions for some alpha capture reactions”, Moscow University Physics Bulletin, 75, 585–589, 2020.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Effects of combining some theoretical models in the cross-section calculations of some alpha-induced reactions for natSb”, Applied Radiation and Isotopes, 186, 110255, 2022.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Effects of deuteron optical models on the cross-section calculations of deuteron induced reactions on natural germanium”, Applied Radiation and Isotopes, 176, 109875, 2021.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “Production cross–section and reaction yield calculations for 123-126I isotopes on 123Sb(α,xn) reactions”, Kuwait Journal of Science, 48(2), 1-11, 2021.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(α,x) reactions”, Physics of Atomic Nuclei, 83, 820-827, 2020.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “An investigation of effects of level density models and gamma-ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,γ) reactions”, Radiochimica Acta, 108(1), 11-17, 2020.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “Investigation of gamma strength functions and level density models effects on photon-induced reaction cross–section calculations for the fusion structural materials 46, 50Ti, 51V, 58Ni and 63Cu”, Applied Radiation and Isotopes, 143, 6-10, 2019.
  • M. Şekerci, H. Özdoğan and A. Kaplan, “Level density model effects on the production cross-section calculations of some medical isotopes via (α, xn) reactions where x = 1–3”, Modern Physics Letters, 35(24), 2050202, 2020.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “Photo-neutron cross-section calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with newly obtained giant dipole resonance parameters”, Applied Radiation and Isotopes,165, 109356, 2020.
  • H. Özdoğan, M. Şekerci and A. Kaplan, “S-factor analysis of proton capture reactions on 112,114,116,119Sn and 113,115In isotopes”, Physics of Atomic Nuclei, 82, 324-329, 2019.
  • N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R. A. Forrest, T. Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O. O. Gritzay, M. Herman, S. Hlavač, K. Katō, B. Lalremruata, Y. O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G. Pikulina, V. G. Pronyaev, A. Saxena, O. Schwerer, S. P. Simakov, N. Soppera, R. Suzuki, S. Takács, X. Tao, S. Taova, F. Tárkányi, V. V. Varlamov, J. Wang, S. C. Yang, V. Zerkin and Y. Zhuang, “Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC)”, Nuclear Data Sheets, 120, 272-276, 2014.
  • V. V. Zerkin and B. Pritychenko, “The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31-43, 2018.
  • E. Fermi, “Zur Quantelung des idealen einatomigen Gases”, Zeitschrift für Physik, 36, 902-912, 1926.
  • A. Gilbert and A. G. W. Cameron, “A composite nuclear-level density formula with shell corrections”, Canadian Journal of Physics, 43(8), 1446-1496, 1965.
  • A. V. Ignatyuk, K. K. Istekov, G. N. Smirenkin, “Role of the collective effects in a systematics of nuclear level density”, Soviet Journal of Nuclear Physics, 29, 450, 1979.
  • H. Baba, “A shell-model nuclear level density”, Nuclear Physics, 159, 625-641, 1970
  • W. Dilg, W. Schantl, H. Vonach and M. Uhl, “Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250”, Nuclear Physics A, 217(2), 269-298, 1973.
  • A. V. Ignatyuk, G. N. Smirenkin and A. S. Tishin, “Phenomenological description of energy dependence of the level density parameter”, Yadernaya Fizika, 21, 485–490, 1975.
  • A. J. Koning, S. Hilaire and S. Goriely, “Global and local level density models”, Nuclear Physics A, 810(1-4), 13-76, 2008.
  • S. Goriely, S. Hilaire, and A. J. Koning, “Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method”, Physical Review C, 78, 064307, 2008.
  • S. Hilaire, and S. Goriely, “Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications”, Nuclear Physics A, 779, 63-81, 2006.
  • S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, “Temperature-dependent combinatorial level densities with the D1M Gogny force”, Physical Review C, 86, 064317, 2012.
  • F. Tárkányi, F. Ditrói, S. Takács, J. Csikai, A. Hermanne, M. S. Uddin and, M. Baba, “Activation cross sections of proton induced nuclear reactions on palladium up to 80 MeV”, Applied Radiation and Isotopes, 114, 128-144, 2016.
  • F. Ditroi, F. Tarkanyi, S. Takacs, I. Mahunka, J. Csikai, A. Hermanne, M. S. Uddin, M. Hagiwara, M. Baba, T. Ido, Yu. Shubin and A.I. Dityuk, “Measurement of activation cross sections of the proton induced nuclear reactions on palladium”, Journal of Radioanalytical and Nuclear Chemistry, 272, 231-235, 2007.
  • V. D. Nguyen, T. L. Nguyen, T. X. Nguyen, T. H. Nguyen, G. N. Kim and K. Kim, “Measurement of cross sections for the formation of 100gRh in natPd(p,x)100m,gRh reactions up to 42.61 MeV”, Journal of Radioanalytical and Nuclear Chemistry, 321, 117-123, 2019.
  • M. U. Khandaker, K. S. Kim, G. N. Kim and N. Otuka, “Cyclotron production of the 105,106mAg, 100,101Pd, 100,101m,105Rh radionuclides by natPd(p,x) nuclear processes”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 2303-2311, 2010.
  • A. Hermanne, S. Takács, F. Tárkányi, and R. Bolbos, “Cross section measurements of proton and deuteron induced formation of 103Ag in natural palladium”, Radiochimica Acta, 92(4-6), 215-218, 2004.
There are 38 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Makaleler
Authors

Özlem Çiftlikli 0000-0002-2339-9822

Abdullah Kaplan 0000-0003-2990-0187

Publication Date May 27, 2024
Submission Date January 12, 2024
Acceptance Date February 27, 2024
Published in Issue Year 2024 Volume: 19 Issue: 1

Cite

IEEE Ö. Çiftlikli and A. Kaplan, “Examination of the Effects of Level Density Models in Cross-Section Calculations of Some (p,x) Reactions on Natural Palladium”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 19, no. 1, pp. 29–39, 2024, doi: 10.29233/sdufeffd.1418644.