Research Article
BibTex RIS Cite

Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes

Year 2022, , 171 - 181, 25.04.2022
https://doi.org/10.19113/sdufenbed.1008231

Abstract

Shell and tube heat exchangers are one of the most used heat exchanger types in applications and it is important to predict heat transfer capacity and pressure loss in both design stage. Heat transfer capacity of a heat exchanger can be enhanced by using tubes having enhanced surfaces instead of smooth ones. In this study, the usage of corrugated tubes in a shell and tube heat exchanger is investigated by using ε-NTU method, energy/exergy analysis. The impact of the usage of corrugated tubes on hot and cold fluid outlet temperatures, energy/exergy efficiencies, entropy generation and total exergy destruction are researched for various operation conditions. The results revealed that the difference between fluid outlet temperatures can be decreased by using tubes having corrugated surfaces instead of smooth ones because of fluid mixing and secondary flows obtained by means of the corrugations. Overall heat transfer coefficient of heat exchanger is enhanced up to 8% with the usage of corrugated tube in considered operation conditions. It is exhibited that the energy and exergy efficiencies of heat exchanger can be improved up to 18% and 16% with the usage of corrugated tubes instead of one having smooth tubes. Moreover, the entropy generation because of heat transfer and pressure loss and total exergy destruction of considered heat exchangers are determined to reveal the impact of corrugated tubes.

References

  • [1] Shah, R. K., Sekulić, D. P. 2003. Fundamentals of Heat Exchanger Design. Hoboken, NJ: John Wiley & Sons.
  • [2] Serth, R. W. 2007. Process heat transfer: Principles and applications. Amsterdam: Elsevier Academic Press.
  • [3] Ralph L Webb, L. R. 1994. Principles of enhanced heat transfer, Wiley New York.
  • [4] Laohalertdecha, S., Wongwises, S. 2010. The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube. International Journal of Heat and Mass Transfer, 53(13-14), 2924-2931
  • [5] Kareem, Z. S., Jaafar, M. M., Lazim, T. M., Abdullah, S., Abdulwahid, A. F. 2015. Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 68, 22-38.
  • [6] Ajeel, R. K., Salim, W. I., Hasnan, K. 2018. Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped. Case Studies in Thermal Engineering, 12, 620-635.
  • [7] Darzi, A. A. R., Farhadi, M., Sedighi, K. 2014. Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube. Experimental Thermal and Fluid Science, 57, 188-199.
  • [8] Dincer, I. 2002. The role of exergy in energy policy making, Energy Policy ,30, 37–49.
  • [9] Bejan, A., Tsatsaronis, G., Moran, M. 1996. Thermal Design & Optimization; Wiley: New York.
  • [10] Kotas, T.J. 1995. The Exergy Method of Thermal Plant Analysis; Krieger Publishing Company: Malabar, FL, USA.
  • [11] Mert, S. O., Reis, A. 2016. Experimental performance investigation of a shell and tube heat exchanger by exergy-based sensitivity analysis. Heat and Mass Transfer, 52(6), 1117-1123.
  • [12] Naphon, P. 2006. Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger. International Communications in Heat and Mass Transfer, 33(8), 1029-1041.
  • [13] Dizaji, H. S., Jafarmadar, S., Asaadi, S. 2017. Experimental exergy analysis for shell and tube heat exchanger made of corrugated shell and corrugated tube. Experimental Thermal and Fluid Science, 81, 475-481.
  • [14] Hajabdollahi, H., Ahmadi, P., Dincer, I. 2012. Exergetic optimization of shell-and-tube heat exchangers using NSGA-II. Heat Transfer Engineering, 33(7), 618-628.
  • [15] Wang, S., Wen, J., Li, Y. 2009. An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. Applied Thermal Engineering, 29(11-12), 2433-2438.
  • [16] Esfahani, M. R., Languri, E. M. 2017. Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Experimental Thermal and Fluid Science, 83, 100-106.
  • [17] Pethkool, S., Eiamsa-Ard, S., Kwankaomeng, S., Promvonge, P. 2011. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. International Communications in Heat and Mass Transfer, 38(3), 340-347.
  • [18] Shirvan, K. M., Mamourian, M., & Esfahani, J. A. 2019. Experimental study on thermal analysis of a novel shell and tube heat exchanger with corrugated tubes. Journal of Thermal Analysis and Calorimetry, 138(2), 1583-1606.
  • [19] Dizaji, H. S., Jafarmadar, S., Mobadersani, F. 2015. Experimental studies on heat transfer and pressure drop characteristics for new arrangements of corrugated tubes in a double pipe heat exchanger. International Journal of Thermal Sciences, 96, 211-220.
  • [20] S. A. Klein, Engineering Equation Solver (EES), F-Chart Software,Middleton.
  • [21] Kakaç, S., Liu, H., Pramuanjaroenkij, A. 2012. Heat Exchangers Selection, Rating, and Thermal Design, Third Edition.
  • [22] Manjunath, K., Kaushik, S.C. 2014. Second law thermodynamic study of heat exchangers: A review. Renewable and Sustainable Energy Reviews, 40, 2014, 348-374.

Pürüzsüz ve Koruge İç Borulara Sahip Bir Gövde Borulu Isı Değiştiricisinin Enerji ve Ekserji Analizi

Year 2022, , 171 - 181, 25.04.2022
https://doi.org/10.19113/sdufenbed.1008231

Abstract

Gövde borulu ısı değiştiricileri uygulama en çok kullanılan ısı değiştirici türlerinden biridir ve tasarım aşamasında ısı transferi kapasitesi ve basınç kaybının tahmin edilmesi önemlidir. Bir ısı değiştiricisinin kapasitesi pürüzsüz yüzeyler yerinde iyileştirilmiş yüzeye sahip borular kullanılarak arttırılabilir. Bu çalışmada, koruge boruların bir gövde borulu ısı değiştiricisinde kullanımı ε-NTU method, enerji/ekserji analizleri kullanılarak araştırılmıştır. Koruge boru kullanımının sıcak ve soğuk akışkan çıkış sıcaklıklarına, enerji/ekserji verimlerine, entropi üretimine ve ekserji yıkımına etkisi farklı çalışma şartları için incelenmiştir. Sonuçlar koruge yüzeyler kullanılarak elde edilen akışkan karışması ve ikincil akışlar sebebiyle pürüzsüz yüzeyler yerine akışkan çıkış sıcaklıkları arasındaki farkın azaltılabileceğini ortaya çıkarmıştır. Göz önüne alınan çalışma şartlarında toplam ısı transfer katsayısı koruge borular kullanılarak %8’e kadar iyileşmiştir. Pürüzsüz boru yerine koruge boru kullanımıyla ısı değiştiricisinin enerji ve ekserji verimlerinin sırasıyla %18 ve %16’ya kadar arttırılabileceği ortaya konmuştur. Ayrıca, göz önüne alınan ısı değiştiricilerinin ısı transferi ve basınç kaybı kaynaklı entropi üretimi ve ekserji yıkımı koruge boru kullanımının etkisini açığa çıkarmak için belirlenmiştir.

References

  • [1] Shah, R. K., Sekulić, D. P. 2003. Fundamentals of Heat Exchanger Design. Hoboken, NJ: John Wiley & Sons.
  • [2] Serth, R. W. 2007. Process heat transfer: Principles and applications. Amsterdam: Elsevier Academic Press.
  • [3] Ralph L Webb, L. R. 1994. Principles of enhanced heat transfer, Wiley New York.
  • [4] Laohalertdecha, S., Wongwises, S. 2010. The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube. International Journal of Heat and Mass Transfer, 53(13-14), 2924-2931
  • [5] Kareem, Z. S., Jaafar, M. M., Lazim, T. M., Abdullah, S., Abdulwahid, A. F. 2015. Passive heat transfer enhancement review in corrugation. Experimental Thermal and Fluid Science, 68, 22-38.
  • [6] Ajeel, R. K., Salim, W. I., Hasnan, K. 2018. Thermal and hydraulic characteristics of turbulent nanofluids flow in trapezoidal-corrugated channel: Symmetry and zigzag shaped. Case Studies in Thermal Engineering, 12, 620-635.
  • [7] Darzi, A. A. R., Farhadi, M., Sedighi, K. 2014. Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube. Experimental Thermal and Fluid Science, 57, 188-199.
  • [8] Dincer, I. 2002. The role of exergy in energy policy making, Energy Policy ,30, 37–49.
  • [9] Bejan, A., Tsatsaronis, G., Moran, M. 1996. Thermal Design & Optimization; Wiley: New York.
  • [10] Kotas, T.J. 1995. The Exergy Method of Thermal Plant Analysis; Krieger Publishing Company: Malabar, FL, USA.
  • [11] Mert, S. O., Reis, A. 2016. Experimental performance investigation of a shell and tube heat exchanger by exergy-based sensitivity analysis. Heat and Mass Transfer, 52(6), 1117-1123.
  • [12] Naphon, P. 2006. Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger. International Communications in Heat and Mass Transfer, 33(8), 1029-1041.
  • [13] Dizaji, H. S., Jafarmadar, S., Asaadi, S. 2017. Experimental exergy analysis for shell and tube heat exchanger made of corrugated shell and corrugated tube. Experimental Thermal and Fluid Science, 81, 475-481.
  • [14] Hajabdollahi, H., Ahmadi, P., Dincer, I. 2012. Exergetic optimization of shell-and-tube heat exchangers using NSGA-II. Heat Transfer Engineering, 33(7), 618-628.
  • [15] Wang, S., Wen, J., Li, Y. 2009. An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. Applied Thermal Engineering, 29(11-12), 2433-2438.
  • [16] Esfahani, M. R., Languri, E. M. 2017. Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Experimental Thermal and Fluid Science, 83, 100-106.
  • [17] Pethkool, S., Eiamsa-Ard, S., Kwankaomeng, S., Promvonge, P. 2011. Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. International Communications in Heat and Mass Transfer, 38(3), 340-347.
  • [18] Shirvan, K. M., Mamourian, M., & Esfahani, J. A. 2019. Experimental study on thermal analysis of a novel shell and tube heat exchanger with corrugated tubes. Journal of Thermal Analysis and Calorimetry, 138(2), 1583-1606.
  • [19] Dizaji, H. S., Jafarmadar, S., Mobadersani, F. 2015. Experimental studies on heat transfer and pressure drop characteristics for new arrangements of corrugated tubes in a double pipe heat exchanger. International Journal of Thermal Sciences, 96, 211-220.
  • [20] S. A. Klein, Engineering Equation Solver (EES), F-Chart Software,Middleton.
  • [21] Kakaç, S., Liu, H., Pramuanjaroenkij, A. 2012. Heat Exchangers Selection, Rating, and Thermal Design, Third Edition.
  • [22] Manjunath, K., Kaushik, S.C. 2014. Second law thermodynamic study of heat exchangers: A review. Renewable and Sustainable Energy Reviews, 40, 2014, 348-374.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ali Celen 0000-0003-3593-5183

Publication Date April 25, 2022
Published in Issue Year 2022

Cite

APA Celen, A. (2022). Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 171-181. https://doi.org/10.19113/sdufenbed.1008231
AMA Celen A. Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. April 2022;26(1):171-181. doi:10.19113/sdufenbed.1008231
Chicago Celen, Ali. “Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 1 (April 2022): 171-81. https://doi.org/10.19113/sdufenbed.1008231.
EndNote Celen A (April 1, 2022) Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 171–181.
IEEE A. Celen, “Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 26, no. 1, pp. 171–181, 2022, doi: 10.19113/sdufenbed.1008231.
ISNAD Celen, Ali. “Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (April 2022), 171-181. https://doi.org/10.19113/sdufenbed.1008231.
JAMA Celen A. Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26:171–181.
MLA Celen, Ali. “Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 1, 2022, pp. 171-8, doi:10.19113/sdufenbed.1008231.
Vancouver Celen A. Energy and Exergy Analysis of a Shell and Tube Heat Exchangers Having Smooth and Corrugated Inner Tubes. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26(1):171-8.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.