Research Article
BibTex RIS Cite

The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule

Year 2022, , 366 - 371, 20.12.2022
https://doi.org/10.19113/sdufenbed.1055889

Abstract

Molecular modelling is an appreciated tool that brings valuable data on physical and chemical characteristics of materials that eliminates the necessity of conducting any experiment. This method allows to calculate the performance of energetic molecules to be synthesized. In the work, the detonation parameters of the energetic organic compounds Pentaerythritol tetranitrate(PETN), Butanetriol trinitrate (BTTN), Trimetylolethane trinitrate (TMETN) and Diethyleneglycol dinitrate (DEGDN) has theoretically been calculated and some values compared with the literature values. Moreover, three hypothetical molecules combining PETN with other explosive molecules have been designed. The detonation properties have been calculated using density functional theory (DFT) with B3LYP/6-31G (d,p) basis set. It has been concluded that all molecules have the effect of increasing the explosion parameters of PETN.

References

  • [1] Urbanski, T. 1964. Chemistry and Technology of Explosives. Vol. I, Pergamon Press, Department of Technology, Politechnika Warszawa.
  • [2] Meyer, R., Köhler, J., Homburg, A. 2007. Explosives, 6nd edition, Wiley-VCH & Co. KGaA, Weinheim, Germany.
  • [3] Agrawal, J. P., Hodgson, R. D. 2007. Organic Chemistry of Explosives, John Wiley & Sons Ltd., Chichester, England.
  • [4] Fang, W., Xiao-Ping, Z., Run-Zhi, H., Yue, W. 2004. Study on combustion properties of nitrate ester plasticized polyether propellants at high pressure. Journal of Propulsion Technology, 19, 20–25.
  • [5] Zhu, W., Yan, Q., Pang, A., Chi, X., Du, X., Xiao, H. 2014. A DFT study of the unimolecular decomposition of 1,2,4-Butanetriol trinitrate. Journal of Molecular Modeling, 20(2), 2081.
  • [6] Zucker, J., Orange, W., Trask, R., Plains, M., Costa, E. Inventors. 1967. Nitrocellulose doublebase propellant containing ternary mixture of nitrate esters. United States Patent No, 3867214A.
  • [7] Wells, F. B. 1976. Explosive composition comprising HMX, RDX, or PETN and a high viscosity nitrocellulose binder plasticized with TMETN. United States Patent No, 3943017.
  • [8] Leach, A. R. 2001. Molecular Modeling: Principles and Applications. Addison Wesley Longman Ltd., Essex, England.
  • [9] Stewart, J. J. P. 1989. Optimization of parameters for semiempirical methods II. applications. Journal of Computational Chemistry, 10, 221-264.
  • [10] Stewart, J. J. P. 1989. Optimization of parameters for semiempirical methods I. method. Journal of Computational Chemistry, 10, 209-220.
  • [11] Kohn, W., Sham, L. J. 1965. Self-consistent equations ıncluding exchange and correlation effects. Physical Review Journals Archive, 140, 1133-1138.
  • [12] Parr, R. G., Yang, W. 1989. Density functional theory of atoms and molecules. Oxford University Press, New York.
  • [13] Allis, D. G., Korter, T. M. 2006. Theoretical analysis of the terahertz spectrum of the high explosive PETN. Chemphyschem, 7, 2398-2408.
  • [14] Cooper, J. K., Grant, C. D., Zhang, J. Z. 2013. Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD. Journal of Physical Chemistry A, 117, 43-51.
  • [15] Gökalp, F. 2019. A theoretical investigation of TNT in different phases by using DFT. Turkish Computational and Theoretical Chemistry, 3, 1-4.
  • [16] Gruzdkov, Y. A., Dreger, Z. A., Gupta, Y. M. 2004. Experimental and theoretical study of pentaerythritol tetranitrate conformers. Journal of Physical Chemistry A, 108, 6216-6221.
  • [17] Jadrich, R. B., Ticknor, C., Leiding, J. A. 2021. First principles reactive simulation for equation of state prediction. Physics Chemical Physics, 1-16.
  • [18] Ohlinger, W. S., Klunzinger, P. E., Deppmeier, B. J., Hehre, W. J. 2009. Efficient calculation of heats of formation. Journal of Physical Chemistry A, 113, 2165-2175.
  • [19] Spartan 08 Modelling Software. 2008. Wavefunction, Irvine Californiai, USA.
  • [20] Gaussian 03. Revision C.02 Modelling Software. 2004. Gaussian Inc., Wallingford, USA.
  • [21] Kamlet, M. J., Jacobs, S. J. 1968. Chemistry of detonations. A simple method for calculating detonation properties of C–H–N–O explosives. Journal of Chemistry Physics, 48, 23-25.
  • [22] Kamlet, M. J., Ablard, J. E. 1968. Chemistry of detonations II. buffered equilibria. The Journal of Chemical Physics, 48, 36-42.
  • [23] Kamlet, M. J., Dickenson, C. 1968. Chemistry of detonations III. evaluation of the simplified calculational method for chapman‐jouguet detonation pressures on the basis of available experimental information. The Journal of Chemical Physics, 48, 43-50.
  • [24] Kamlet, M. J., Hurwitz, H. J. 1968. Chemistry of detonations IV, evaluation of a simple predictional method for detonation velocities of C–H–N–O explosives, The Journal of Chemical Physics. 48, 3685-3692.
  • [25] Şen, N. 2018. A new cocrystal explosive Trinitrotoluene(TNT):1-Amino-4-bromonaphthalene with reduced sensitivity. Turkish Journal of Chemistry, 42, 1321-1333.
  • [26] Qiu, L., Xiao, H., Gong, X., Ju, X., Zhu, W. 2006. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. Journal of Physical Chemistry A, 110, 3797-3807.
  • [27] Türker, L. 2020. A DFT treatment of some aluminized 1,3,3-Trinitroazetidine (TNAZ) systems - a deeper look. Earthline Journal of Chemical Sciences, 121-140.
  • [28] Türker, L. 2019. Some DADNE embedded push-pull type structures - a DFT study. Earthline Journal of Chemical Sciences, 1-23.
  • [29] Türker, L., Variş, S. 2013. Prediction of Explosive Performance Properties ofz-DBBD and Its Isomers by Quantum Chemical Computations. Journal of Energetic Materials, 31, 203-216.
  • [30] Wu, Q., Yan, G., Li, M., Hu, Q., Zhang, Z., Zhu, W. 2020. Density functional theory studies of effects of boron replacement on the structure and property of RDX and HMX. Journal of the Chinese Chemical Society, 67, 1977-1985.
  • [31] Wang, G., Xu, Y., Xue, C., Ding, Z., Liu, Y., Liu, H., Gong, X. 2019. Prediction of the crystalline densities of aliphatic nitrates by quantum chemistry methods. Cental European Journal of Energetic Materials, 16, 412-432.
  • [32] Labanowski, J. K., Andzelm, J. W. 1991. Density functional methods in chemistry. Springer-Verlag, Berlin.
  • [33] Seminario, J. M., Politzer, P. 1995. Theoretical and computational chemistry. Elsevier Scientific, Amsterdam.
  • [34] Cowan, R. D., Fickett, W. 1956. Calculation of the detonation products of solid explosives with the kistiakowsky-wilson equation of state. Journal of Chemical Physics, 24, 932.
  • [35] Muthurajan, H., Sivabalan, R., Talawar, M. B., Asthana, S. N. 2004. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. Journal of Hazardous Materials, 112, 17-33.
  • [36] Zhang, W., Zhang, T., Guo, W., Wang, L., Li, Z., Zhang, J. 2019. Theoretical studies of pentazole-based compounds with high detonation performance. Journal of Energetic Materials, 37, 433-444.
  • [37] Zhang, Y-J., Bai, Y., Li, J-Z., Fu, X-L., Yang, Y-J., Tang, Q-F. 2019. Energetic nitrocellulose coating: effective way to decrease sensitivity and modify surface property of HMX particles. Journal of Energetic Materials, 37, 212-221.
  • [38] Wang, K., Zhu, W. 2020. Theoretical studies on the surface property, thermal behaviors, stability, and disassembly process of HMX/DMF cocrystal. Computational Materials Science, 178, 109643.
  • [39] Martin, A. R., Yallop, H. J. 1959. The correlation of explosive power with molecular structure. Journal of Applied Chemistry, 9, 310-315.
  • [40] Zel'dovich, Y. B., Kompaneets, A. S. 1955. Theory of detonation. State Technical Press, Moscow, 208–210.
  • [41] Hougen, O. A., Watson, K., Ragatz, R. 1954. Chemical process principles. John Wiley & Sons, 66–67.
  • [42] Anderson, H. V. 1955. Chemical calculations. McGraw-Hill, New York, 206.
  • [43] Politzer, P., Murray, J. S. 2011. Some perspectives on estimating detonation properties of C, H, N, O compounds. Central European Journal of Energetic Materials, 8(3), 209-220.

PETN Molekülünün Patlama Özelliklerine BTTN, TMETN and DEGDN Moleküllerinin Etkileri

Year 2022, , 366 - 371, 20.12.2022
https://doi.org/10.19113/sdufenbed.1055889

Abstract

Moleküler modelleme deney yapmaksızın moleküllerin fiziksel ve kimyasal özellikleri hakkında değerli veriler sunan bir araçtır. Bu yöntem sentezlenecek enerjik moleküllerin performanslarının hesaplanmasına olanak sağlamaktadır. Çalışmada enerjik organik bileşik olan Pentaeritritol tetranitrat (PETN), Bütantriol trinitrat (BTNN), Trimetiloletan trinitrat (TMETN) ve Dietilen glikol dinatrat (DEGDN) moleküllerinin patlama parametreleri kuramsal olarak hesaplanmış ve bazı değerler literatür değerleriyle karşılaştırılmıştır. Ayrıca PETN ve diğer moleküller arasında farklı üç boyutlu moleküller modellenmiştir. Patlama özelliklerinin hesaplanması için B3LYP 6-31G (d,p) temel seti ile yoğunluk fonksiyonel teorisi (YFT) kullanılmıştır. Tüm moleküllerin PETN’ nin patlama parametrelerini artırıcı etkide bulunduğu sonucuna ulaşılmıştır.

References

  • [1] Urbanski, T. 1964. Chemistry and Technology of Explosives. Vol. I, Pergamon Press, Department of Technology, Politechnika Warszawa.
  • [2] Meyer, R., Köhler, J., Homburg, A. 2007. Explosives, 6nd edition, Wiley-VCH & Co. KGaA, Weinheim, Germany.
  • [3] Agrawal, J. P., Hodgson, R. D. 2007. Organic Chemistry of Explosives, John Wiley & Sons Ltd., Chichester, England.
  • [4] Fang, W., Xiao-Ping, Z., Run-Zhi, H., Yue, W. 2004. Study on combustion properties of nitrate ester plasticized polyether propellants at high pressure. Journal of Propulsion Technology, 19, 20–25.
  • [5] Zhu, W., Yan, Q., Pang, A., Chi, X., Du, X., Xiao, H. 2014. A DFT study of the unimolecular decomposition of 1,2,4-Butanetriol trinitrate. Journal of Molecular Modeling, 20(2), 2081.
  • [6] Zucker, J., Orange, W., Trask, R., Plains, M., Costa, E. Inventors. 1967. Nitrocellulose doublebase propellant containing ternary mixture of nitrate esters. United States Patent No, 3867214A.
  • [7] Wells, F. B. 1976. Explosive composition comprising HMX, RDX, or PETN and a high viscosity nitrocellulose binder plasticized with TMETN. United States Patent No, 3943017.
  • [8] Leach, A. R. 2001. Molecular Modeling: Principles and Applications. Addison Wesley Longman Ltd., Essex, England.
  • [9] Stewart, J. J. P. 1989. Optimization of parameters for semiempirical methods II. applications. Journal of Computational Chemistry, 10, 221-264.
  • [10] Stewart, J. J. P. 1989. Optimization of parameters for semiempirical methods I. method. Journal of Computational Chemistry, 10, 209-220.
  • [11] Kohn, W., Sham, L. J. 1965. Self-consistent equations ıncluding exchange and correlation effects. Physical Review Journals Archive, 140, 1133-1138.
  • [12] Parr, R. G., Yang, W. 1989. Density functional theory of atoms and molecules. Oxford University Press, New York.
  • [13] Allis, D. G., Korter, T. M. 2006. Theoretical analysis of the terahertz spectrum of the high explosive PETN. Chemphyschem, 7, 2398-2408.
  • [14] Cooper, J. K., Grant, C. D., Zhang, J. Z. 2013. Experimental and TD-DFT study of optical absorption of six explosive molecules: RDX, HMX, PETN, TNT, TATP, and HMTD. Journal of Physical Chemistry A, 117, 43-51.
  • [15] Gökalp, F. 2019. A theoretical investigation of TNT in different phases by using DFT. Turkish Computational and Theoretical Chemistry, 3, 1-4.
  • [16] Gruzdkov, Y. A., Dreger, Z. A., Gupta, Y. M. 2004. Experimental and theoretical study of pentaerythritol tetranitrate conformers. Journal of Physical Chemistry A, 108, 6216-6221.
  • [17] Jadrich, R. B., Ticknor, C., Leiding, J. A. 2021. First principles reactive simulation for equation of state prediction. Physics Chemical Physics, 1-16.
  • [18] Ohlinger, W. S., Klunzinger, P. E., Deppmeier, B. J., Hehre, W. J. 2009. Efficient calculation of heats of formation. Journal of Physical Chemistry A, 113, 2165-2175.
  • [19] Spartan 08 Modelling Software. 2008. Wavefunction, Irvine Californiai, USA.
  • [20] Gaussian 03. Revision C.02 Modelling Software. 2004. Gaussian Inc., Wallingford, USA.
  • [21] Kamlet, M. J., Jacobs, S. J. 1968. Chemistry of detonations. A simple method for calculating detonation properties of C–H–N–O explosives. Journal of Chemistry Physics, 48, 23-25.
  • [22] Kamlet, M. J., Ablard, J. E. 1968. Chemistry of detonations II. buffered equilibria. The Journal of Chemical Physics, 48, 36-42.
  • [23] Kamlet, M. J., Dickenson, C. 1968. Chemistry of detonations III. evaluation of the simplified calculational method for chapman‐jouguet detonation pressures on the basis of available experimental information. The Journal of Chemical Physics, 48, 43-50.
  • [24] Kamlet, M. J., Hurwitz, H. J. 1968. Chemistry of detonations IV, evaluation of a simple predictional method for detonation velocities of C–H–N–O explosives, The Journal of Chemical Physics. 48, 3685-3692.
  • [25] Şen, N. 2018. A new cocrystal explosive Trinitrotoluene(TNT):1-Amino-4-bromonaphthalene with reduced sensitivity. Turkish Journal of Chemistry, 42, 1321-1333.
  • [26] Qiu, L., Xiao, H., Gong, X., Ju, X., Zhu, W. 2006. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. Journal of Physical Chemistry A, 110, 3797-3807.
  • [27] Türker, L. 2020. A DFT treatment of some aluminized 1,3,3-Trinitroazetidine (TNAZ) systems - a deeper look. Earthline Journal of Chemical Sciences, 121-140.
  • [28] Türker, L. 2019. Some DADNE embedded push-pull type structures - a DFT study. Earthline Journal of Chemical Sciences, 1-23.
  • [29] Türker, L., Variş, S. 2013. Prediction of Explosive Performance Properties ofz-DBBD and Its Isomers by Quantum Chemical Computations. Journal of Energetic Materials, 31, 203-216.
  • [30] Wu, Q., Yan, G., Li, M., Hu, Q., Zhang, Z., Zhu, W. 2020. Density functional theory studies of effects of boron replacement on the structure and property of RDX and HMX. Journal of the Chinese Chemical Society, 67, 1977-1985.
  • [31] Wang, G., Xu, Y., Xue, C., Ding, Z., Liu, Y., Liu, H., Gong, X. 2019. Prediction of the crystalline densities of aliphatic nitrates by quantum chemistry methods. Cental European Journal of Energetic Materials, 16, 412-432.
  • [32] Labanowski, J. K., Andzelm, J. W. 1991. Density functional methods in chemistry. Springer-Verlag, Berlin.
  • [33] Seminario, J. M., Politzer, P. 1995. Theoretical and computational chemistry. Elsevier Scientific, Amsterdam.
  • [34] Cowan, R. D., Fickett, W. 1956. Calculation of the detonation products of solid explosives with the kistiakowsky-wilson equation of state. Journal of Chemical Physics, 24, 932.
  • [35] Muthurajan, H., Sivabalan, R., Talawar, M. B., Asthana, S. N. 2004. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. Journal of Hazardous Materials, 112, 17-33.
  • [36] Zhang, W., Zhang, T., Guo, W., Wang, L., Li, Z., Zhang, J. 2019. Theoretical studies of pentazole-based compounds with high detonation performance. Journal of Energetic Materials, 37, 433-444.
  • [37] Zhang, Y-J., Bai, Y., Li, J-Z., Fu, X-L., Yang, Y-J., Tang, Q-F. 2019. Energetic nitrocellulose coating: effective way to decrease sensitivity and modify surface property of HMX particles. Journal of Energetic Materials, 37, 212-221.
  • [38] Wang, K., Zhu, W. 2020. Theoretical studies on the surface property, thermal behaviors, stability, and disassembly process of HMX/DMF cocrystal. Computational Materials Science, 178, 109643.
  • [39] Martin, A. R., Yallop, H. J. 1959. The correlation of explosive power with molecular structure. Journal of Applied Chemistry, 9, 310-315.
  • [40] Zel'dovich, Y. B., Kompaneets, A. S. 1955. Theory of detonation. State Technical Press, Moscow, 208–210.
  • [41] Hougen, O. A., Watson, K., Ragatz, R. 1954. Chemical process principles. John Wiley & Sons, 66–67.
  • [42] Anderson, H. V. 1955. Chemical calculations. McGraw-Hill, New York, 206.
  • [43] Politzer, P., Murray, J. S. 2011. Some perspectives on estimating detonation properties of C, H, N, O compounds. Central European Journal of Energetic Materials, 8(3), 209-220.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Cihat Hilal 0000-0002-6966-6711

Serhat Varış 0000-0003-1925-0053

Mehmet Erman Mert 0000-0002-0114-8707

Müşerref Önal 0000-0002-1540-8389

Yüksel Sarıkaya 0000-0002-2556-078X

Publication Date December 20, 2022
Published in Issue Year 2022

Cite

APA Hilal, C., Varış, S., Mert, M. E., Önal, M., et al. (2022). The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(3), 366-371. https://doi.org/10.19113/sdufenbed.1055889
AMA Hilal C, Varış S, Mert ME, Önal M, Sarıkaya Y. The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2022;26(3):366-371. doi:10.19113/sdufenbed.1055889
Chicago Hilal, Cihat, Serhat Varış, Mehmet Erman Mert, Müşerref Önal, and Yüksel Sarıkaya. “The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, no. 3 (December 2022): 366-71. https://doi.org/10.19113/sdufenbed.1055889.
EndNote Hilal C, Varış S, Mert ME, Önal M, Sarıkaya Y (December 1, 2022) The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 3 366–371.
IEEE C. Hilal, S. Varış, M. E. Mert, M. Önal, and Y. Sarıkaya, “The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 26, no. 3, pp. 366–371, 2022, doi: 10.19113/sdufenbed.1055889.
ISNAD Hilal, Cihat et al. “The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/3 (December 2022), 366-371. https://doi.org/10.19113/sdufenbed.1055889.
JAMA Hilal C, Varış S, Mert ME, Önal M, Sarıkaya Y. The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26:366–371.
MLA Hilal, Cihat et al. “The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 26, no. 3, 2022, pp. 366-71, doi:10.19113/sdufenbed.1055889.
Vancouver Hilal C, Varış S, Mert ME, Önal M, Sarıkaya Y. The Effects of BTTN, TMETN and DEGDN Molecules on the Explosion Properties of PETN Molecule. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2022;26(3):366-71.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.