Recovery of Lead and Zinc Heavy Metals from Leach Solution by Chemical and Biological Methods
Year 2023,
, 33 - 41, 25.04.2023
Ceyda Üge
,
Aytül Bayraktar
,
Melda Başbuğ Çancı
,
Emine Sayılgan
Abstract
Within the scope of this study, a waste sludge obtained from a Lead-ZincCopper Flotation Enrichment Facility in Turkey. Mining waste contains high concentrations of Zn and Pb elements, therefore it is aimed to recover these elements with an environmentally friendly method. For this purpose, the recovery of Pb and Zn heavy metals was investigated by chemical and biological methods after leaching with 2 M HNO3. As a result of the leaching studies, it has been determined that Pb and Zn heavy metals can be taken into solution effectively with 2 M HNO3 at 40°C, at the end of the 4 hours test period. Under the specified leaching conditions, approximately 73% Pb and 37% Zn could be leached into solution. For biological recovery experiments, the effects at 3 different levels of 4 different variables (MC concentration, pH, reaction time and temperature), which were created according to 24 factorial designs were investigated. The results showed that it was possible to
recover 79-100% of all elements at high pH values. For chemical recovery studies, the effect of different pH values on removal with 8M NaOH was investigated and recovery of 95% Pb and 94% Zn was obtained after precipitation.
References
- [1] WWF https://www.wwf.org.tr/calismalarimiz/tatli_su/ (Erişim tarihi 21.04.2022)
- [2] Oyewo, O.A., Elemike, E.E., Onwudiwe, D.C.,Onyango, M.S., 2020. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal
of Biological Macromolecules 164, 2477–2496.
- [3] Olubambi, P.A., Borode, J.O. ve Ndlovu, S. 2006. Sulphuric acid leaching of zinc and copper from Nigerian Complex Sulphide Ore in the presence of hydrogenperoxide. The Journal of The Southern
African Institute of Mining and Metallurgy, 106:765-770.
- [4] Ahmed, I.M., Nayl A.A., Daoud J.A., 2012. Leaching and recovery of zinc and copper from brass slag by sulfuric acid. Journal of Saudi Chemical Society (in press). http://dx.doi.org/10.1016/j.jscs.2012.11.003
- [5] Basit, S., 2015. Pirinç Atıklarının Liçi ve İyonik Sıvıların Solvent Ekstraksiyonda Kullanımının İncelenmesi. Yıldız Teknik Üniversitesi, Metalurji ve Malzeme Anabilim Dalı, Yüksek Lisans Tezi, 81s, İstanbul.
- [6] Şahin, M., 2014. Çinko Ekstraksiyon Atığı Döner Filtre Kekinden Yüsek Sıcaklık-Basınç Şartlarında Çinko-Kurşun Kazanımı. Fırat Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 106s, Elazığ.
- [7] Zamsow, M.J., Murphy, J.E., 1992. Removal of Metal and Other Cations from Water Using Zeolites. Separation Science and Technology, 27(14), 1962–1984.
- [8] Ghirişan, A.L., Drăgan, S., Pop, A., Simihăian, M., & Miclăuş, V., 2007. Heavy metal removal and neutralization of acid mine waste water - kinetic study. The Canadian Journal of Chemical Engineering, 85, 900-905.
- [9] Moosavi-Nasab M, Yousefi A. 2011. Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol., 9(2) : 94-101.
- [10] Volesky, B., 2001. Detoxification of metal bearing effluents:biosorption for the next century. Hydrometallurgy 59, 203–216.
- [11] Dakiky, M., Khamis, M., Manassra, A., Mer’eb, M., 2002. Selectiveadsorption of chromium (VI) in industrial wastewater usinglow-cost abundantly available adsorbents. Adv. Environ. Res.6, 533–540.
- [12] Sciban, M., Klasnja, M., Skrbic, B., 2006a. Modified hardwoodsawdust as adsorbent of heavy metal ions from water. WoodSci. Technol. 40, 217–227.
- [13] Sciban, M., Klasnja, M., Skrbic, B., 2006b. Modified softwoodsawdust as adsorbent of heavy metal ions from water. J.Hazard. Mater. B 136, 266–271.
- [14] Sciban, M., Radeti, B., Kevresan, Z., Klasnja, M., 2007. Adsorptionof heavy metals from electroplating wastewater by woodsawdust. Biores. Technol. 98, 402.
- [15] Razmovski, R., Šćiban, M., 2008. Biosorption of Cr(VI) and Cu(II) by wastetea fungal biomass. Ecological Engineering 34, 179–186.
- [16] Vasudevan, P., Padmavathy, V., Tewari, N., Dhingra, S.C.J., 2001. Biosorption of heavy metal ions. J. Sci. Ind. Res. 60, 112–120.
- [17] Hossini, H., Rezaee, A., Ayati, B., Mahvi, A.H., 2015. Simultaneous nitrification and denitrification using a polypyrrole/microbial cellulose electrode in a membraneless bio-electrochemical system.
RSC Advances, 5(89): 72699-72708.
- [18] Son, H.J., Kim, H.G., Kim, K.K., 2003. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol., 86, 215-219.
- [19] Rezaee, A., Derayat, J., Mortazavi, S., Yamini, Y., Jafarzadeh, M., 2005. Removal of mercury from chlor-alkali industry wastewater using Acetobacter xylinum cellulose. Am J Environ Sci., 1(2) : 102-105.
- [20] Rezaee, A., Godini, H., Bakhtou, H., 2008. Microbial Cellulose as Support Materialfor the Immobilization of Denitrifying Bacteria. Environmental Engineering and Management Journal, 7, No.5, 589–593. http://omicron.ch.tuiasi.ro/EEMJ/.
- [21] Gupta P., Diwan B., 2017. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies . Biotechnology Reports., 58-71.
- [22] Arundhati Pal., A. K. Paul., 2008. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation Indian J. Microbiol. 48:49–64.
- [23] Cichy, K., Regula, C. and Pajor, G., 2016. Flotation of zinc and lead oxide minerals from Olkusz region calamine ores. E3S Web of Conferences 8, 01042 DOI: 10.1051/e3sconf/20160801042.
- [24] Kurşun, İ., Özdemir, O., Eskibalcı, M.F., Terzi, M., 2017. Balıkesir Balya bölgesi kurşun-çinko flotasyon artıklarının karakterizasyonu. ISME2017, 27-29.09.2017, 481-492, Bodrum/Türkiye.
- [25] Turan, M.D., Altundogan, H.S., Tumen, F., 2004. Recovery of zinc and lead from zinc plant residue, Hydrometallurgy, 75, 169–176.
- [26] Farahmand, F., Moradkhani, D., Safarzadeh, M. S., Rashchi, F., 2009. Brine leaching of lead-bearing zinc plant residues: Process optimization using orthogonal array design methodology,
Hydrometallurgy, 95, 316-324.
- [27] Yurten, M., 2011. Çinko Ekstraksiyon Atığı Döner Filtre Kekinden NaOH Liçi İle Çinko-Kurşun Kazanımı. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 84s, Elazığ.
- [28] Jin, X., Xiang, Z., Liu, Q., Chen, Y., Lu, F., 2017. Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresource Technology, 244(1), 844-849.
- [29] Ashtari, P., Pourghahramani, P., 2018. ‘’Hydrometallurgical recycling of cobalt from zincplants residue’’, J Mater Cycles Waste Manag., 20, 155–166.
- [30] Statsoft, 2020. https://www.statsoft.de/en/home (Erişim Tarihi: 21.04.2020)
- [31] Wang, Li P., Ponou, J., Matsuo, S., Okaya, K., Dodbiba, G., Nazuka, T., Toyohisa, F., 2013. Integrating sulfidization with neutralization treatment for selective recovery of copper and zinc over iron from acid mine drainage. Minerals Engineering, Volume 45, Pages 100-107, ISSN 0892-6875, https://doi.org/10.1016/j.mineng.2013.02.011
- [32] Tang, J., Liu, S., Zheng, C., Hu, H., Ji, X., Hu, J., 2020. Zinc recovery from dilute ammoniacal media using an integrated solvent extraction and electrolysis process. Hydrometallurgy, Volume 198, 105510. https://doi.org/10.1016/j.hydromet.2020.105510
- [33] Halli, P., Agarwal, V., Partinen, J., Lundström, M., 2020. Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction. Separation and Purification Technology, Volume 236, 116264. https://doi.org/10.1016/j.seppur.20
Liç Solüsyonundan Kimyasal ve Biyolojik Yöntemlerle Kurşun ve Çinko Ağır Metallerinin Geri Kazanımı
Year 2023,
, 33 - 41, 25.04.2023
Ceyda Üge
,
Aytül Bayraktar
,
Melda Başbuğ Çancı
,
Emine Sayılgan
Abstract
Bu çalışmada, Kurşun-Çinko- Bakır Flotasyon Zenginleştirme tesisinden temin edilen atık çamurda yüksek konsantrasyonda tespit edilen Zn ve Pb elementlerinin geri kazanımı hedeflenmiştir. Bu amaçla atık maden çamuru 2 M HNO3 ile liç edildikten sonra, kimyasal ve biyolojik yöntemlerle Pb ve Zn ağır metallerinin geri kazanımı araştırılmıştır. Liç çalışmaları sonucunda 2 M HNO3 ile 40 °C’de, 4 saat deney süresi sonunda Pb (%73 ) ve Zn (%37 ) ağır metallerinin etkili bir biçimde solüsyona alınabildiği tespit edilmiştir. Biyolojik geri kazanım deneylerinde 24 faktöriyel dizayna göre oluşturulan 4 farklı değişkenin (MS konsantrasyonu, pH, deney süresi ve deney sıcaklığı), 3 farklı seviyede etkisi araştırılmıştır. Elde edilen sonuçlar, yüksek pH değerlerinde tüm elementlerin %79-100 oranında geri
kazanıldığını göstermiştir. Kimyasal geri kazanım çalışmalarında, 8 M NaOH ile farklı pH değerlerinin giderime olan etkisi incelenmiş ve presipitasyon sonrasında %95 Pb ve %94 Zn geri kazanımı elde edilmiştir.
References
- [1] WWF https://www.wwf.org.tr/calismalarimiz/tatli_su/ (Erişim tarihi 21.04.2022)
- [2] Oyewo, O.A., Elemike, E.E., Onwudiwe, D.C.,Onyango, M.S., 2020. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. International Journal
of Biological Macromolecules 164, 2477–2496.
- [3] Olubambi, P.A., Borode, J.O. ve Ndlovu, S. 2006. Sulphuric acid leaching of zinc and copper from Nigerian Complex Sulphide Ore in the presence of hydrogenperoxide. The Journal of The Southern
African Institute of Mining and Metallurgy, 106:765-770.
- [4] Ahmed, I.M., Nayl A.A., Daoud J.A., 2012. Leaching and recovery of zinc and copper from brass slag by sulfuric acid. Journal of Saudi Chemical Society (in press). http://dx.doi.org/10.1016/j.jscs.2012.11.003
- [5] Basit, S., 2015. Pirinç Atıklarının Liçi ve İyonik Sıvıların Solvent Ekstraksiyonda Kullanımının İncelenmesi. Yıldız Teknik Üniversitesi, Metalurji ve Malzeme Anabilim Dalı, Yüksek Lisans Tezi, 81s, İstanbul.
- [6] Şahin, M., 2014. Çinko Ekstraksiyon Atığı Döner Filtre Kekinden Yüsek Sıcaklık-Basınç Şartlarında Çinko-Kurşun Kazanımı. Fırat Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 106s, Elazığ.
- [7] Zamsow, M.J., Murphy, J.E., 1992. Removal of Metal and Other Cations from Water Using Zeolites. Separation Science and Technology, 27(14), 1962–1984.
- [8] Ghirişan, A.L., Drăgan, S., Pop, A., Simihăian, M., & Miclăuş, V., 2007. Heavy metal removal and neutralization of acid mine waste water - kinetic study. The Canadian Journal of Chemical Engineering, 85, 900-905.
- [9] Moosavi-Nasab M, Yousefi A. 2011. Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol., 9(2) : 94-101.
- [10] Volesky, B., 2001. Detoxification of metal bearing effluents:biosorption for the next century. Hydrometallurgy 59, 203–216.
- [11] Dakiky, M., Khamis, M., Manassra, A., Mer’eb, M., 2002. Selectiveadsorption of chromium (VI) in industrial wastewater usinglow-cost abundantly available adsorbents. Adv. Environ. Res.6, 533–540.
- [12] Sciban, M., Klasnja, M., Skrbic, B., 2006a. Modified hardwoodsawdust as adsorbent of heavy metal ions from water. WoodSci. Technol. 40, 217–227.
- [13] Sciban, M., Klasnja, M., Skrbic, B., 2006b. Modified softwoodsawdust as adsorbent of heavy metal ions from water. J.Hazard. Mater. B 136, 266–271.
- [14] Sciban, M., Radeti, B., Kevresan, Z., Klasnja, M., 2007. Adsorptionof heavy metals from electroplating wastewater by woodsawdust. Biores. Technol. 98, 402.
- [15] Razmovski, R., Šćiban, M., 2008. Biosorption of Cr(VI) and Cu(II) by wastetea fungal biomass. Ecological Engineering 34, 179–186.
- [16] Vasudevan, P., Padmavathy, V., Tewari, N., Dhingra, S.C.J., 2001. Biosorption of heavy metal ions. J. Sci. Ind. Res. 60, 112–120.
- [17] Hossini, H., Rezaee, A., Ayati, B., Mahvi, A.H., 2015. Simultaneous nitrification and denitrification using a polypyrrole/microbial cellulose electrode in a membraneless bio-electrochemical system.
RSC Advances, 5(89): 72699-72708.
- [18] Son, H.J., Kim, H.G., Kim, K.K., 2003. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol., 86, 215-219.
- [19] Rezaee, A., Derayat, J., Mortazavi, S., Yamini, Y., Jafarzadeh, M., 2005. Removal of mercury from chlor-alkali industry wastewater using Acetobacter xylinum cellulose. Am J Environ Sci., 1(2) : 102-105.
- [20] Rezaee, A., Godini, H., Bakhtou, H., 2008. Microbial Cellulose as Support Materialfor the Immobilization of Denitrifying Bacteria. Environmental Engineering and Management Journal, 7, No.5, 589–593. http://omicron.ch.tuiasi.ro/EEMJ/.
- [21] Gupta P., Diwan B., 2017. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies . Biotechnology Reports., 58-71.
- [22] Arundhati Pal., A. K. Paul., 2008. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation Indian J. Microbiol. 48:49–64.
- [23] Cichy, K., Regula, C. and Pajor, G., 2016. Flotation of zinc and lead oxide minerals from Olkusz region calamine ores. E3S Web of Conferences 8, 01042 DOI: 10.1051/e3sconf/20160801042.
- [24] Kurşun, İ., Özdemir, O., Eskibalcı, M.F., Terzi, M., 2017. Balıkesir Balya bölgesi kurşun-çinko flotasyon artıklarının karakterizasyonu. ISME2017, 27-29.09.2017, 481-492, Bodrum/Türkiye.
- [25] Turan, M.D., Altundogan, H.S., Tumen, F., 2004. Recovery of zinc and lead from zinc plant residue, Hydrometallurgy, 75, 169–176.
- [26] Farahmand, F., Moradkhani, D., Safarzadeh, M. S., Rashchi, F., 2009. Brine leaching of lead-bearing zinc plant residues: Process optimization using orthogonal array design methodology,
Hydrometallurgy, 95, 316-324.
- [27] Yurten, M., 2011. Çinko Ekstraksiyon Atığı Döner Filtre Kekinden NaOH Liçi İle Çinko-Kurşun Kazanımı. Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 84s, Elazığ.
- [28] Jin, X., Xiang, Z., Liu, Q., Chen, Y., Lu, F., 2017. Polyethyleneimine-bacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution. Bioresource Technology, 244(1), 844-849.
- [29] Ashtari, P., Pourghahramani, P., 2018. ‘’Hydrometallurgical recycling of cobalt from zincplants residue’’, J Mater Cycles Waste Manag., 20, 155–166.
- [30] Statsoft, 2020. https://www.statsoft.de/en/home (Erişim Tarihi: 21.04.2020)
- [31] Wang, Li P., Ponou, J., Matsuo, S., Okaya, K., Dodbiba, G., Nazuka, T., Toyohisa, F., 2013. Integrating sulfidization with neutralization treatment for selective recovery of copper and zinc over iron from acid mine drainage. Minerals Engineering, Volume 45, Pages 100-107, ISSN 0892-6875, https://doi.org/10.1016/j.mineng.2013.02.011
- [32] Tang, J., Liu, S., Zheng, C., Hu, H., Ji, X., Hu, J., 2020. Zinc recovery from dilute ammoniacal media using an integrated solvent extraction and electrolysis process. Hydrometallurgy, Volume 198, 105510. https://doi.org/10.1016/j.hydromet.2020.105510
- [33] Halli, P., Agarwal, V., Partinen, J., Lundström, M., 2020. Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction. Separation and Purification Technology, Volume 236, 116264. https://doi.org/10.1016/j.seppur.20