Research Article
BibTex RIS Cite

Laboratory Scale Photobioreactor Design for Microalgal Biomass Production

Year 2023, , 239 - 245, 25.08.2023
https://doi.org/10.19113/sdufenbed.1202868

Abstract

Microalgal biotechnology is recognized as a productive alternative that
could potentially solve the global problems faced today, including the energy crisis,
climate change, environmental degradation, and food shortages. This is mainly due
to the fact that microalgae are able to capture large amounts of carbon dioxide and
directly convert solar energy into chemical energy conserved in biomass through
photosynthesis. Microalgal biomass can be used as food and animal feed, as well as
evaluated in biofuel production. In this study, a laboratory-scale photobioreactor
was designed, and the time-dependent development of different microalgae species
in this system was investigated. In terms of microalgal biomass production, it is
important that the proposed system has an industrially applicable design with scaleup. In addition, the spherical manifold system used for air supply to simultaneous
and parallel photobioreactors is an original design in terms of obtaining comparable
results. In experiments in which the development of different algae species was
examined with optical density measurements for 32 days, it was seen that algae
cultures could be produced with high efficiency. It has been observed that an
approximately 50-fold increase can be achieved in the dry matter concentration for
the Chlorella protothecoides-2 strain investigated by using the system with
increasing from 0.04 g/L to 1.94 g/L at the end of a 20 day.

References

  • [1] Adeniyi, O. M., Azimov, U., Burluka, A. 2018. Algae biofuel: current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316-335.
  • [2] Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
  • [3] Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., Luque, R. 2018. A review on sustainable production: Recent developments. Journal of Cleaner Production, 181, 42-59.
  • [4] Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., Masojídek, J. 2017. Photobioreactors for the production of microalgae. In Microalgae-based biofuels and bioproducts (pp. 1-44). Woodhead Publishing.
  • [5] Tredici, M. R., Biondi, N., Ponis, E., Rodolfi, L.,Zittelli, G. C. 2009. Advances in microalgal culture for aquaculture feed and other uses. In New technologies in aquaculture (pp. 610-676). Woodhead Publishing.
  • [6] Milledge, J. J. 2011. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Biotechnology, 10, 31–41.
  • [7] Satyanarayana, K. G., Mariano, A. B., Vargas, J. V. C. 2011. A review on microalgae, a versatile source for sustainable energy and materials. International Journal of Energy Research, 35(4), 291-311.
  • [8] Gouveia, L. 2011. Microalgae as a Feedstock for Biofuels. In Microalgae as a Feedstock for Biofuels (pp. 1-69). Springer, Berlin, Heidelberg.
  • [9] Hemaiswarya, S., Raja, R., Ravi Kumar, R., Ganesan, V., Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8), 1737-1746.
  • [10] Tulli, F., Chini Zittelli, G., Giorgi, G., Poli, B. M., Tibaldi, E., Tredici, M. R. 2012. Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. Journal of Aquatic Food Product Technology, 21(3), 188-197.
  • [11] Wahidin, S., Idris, A., Shaleh, S. R. M. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7-11.
  • [12] Olguín, E. J. 2012. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30(5), 1031-1046.
  • [13] Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., Simões, M. 2012. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5), 3043-3053.
  • [14] Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., Li, K., Liu, J., Ruan, R. 2017. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, 1163-1175.
  • [15] Shuba, E. S., Kifle, D. 2018. Microalgae to biofuels: Promising alternative and renewable energy, review. Renewable and Sustainable Energy
  • [16] Sun, Y., Huang, Y., Liao, Q., Xia, A., Fu, Q., Zhu, X., & Fu, J. 2018. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. Bioresource Technology, 249, 880-889.
  • [17] De Vree, J. H., Bosma, R., Janssen, M., Barbosa, M. J., Wijffels, R. H. 2015. Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for biofuels, 8(1), 1-12.
  • [18] Pires, J. C., Alvim-Ferraz, M. C., Martins, F. G. 2017. Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews, 79, 248-254.
  • [19] Bahadar, A., & Khan, M. B. 2013. Progress in energy from microalgae: a review. Renewable and Sustainable Energy Reviews, 27, 128-148.
  • [20] Sun, Y., Huang, Y., Liao, Q., Fu, Q., Zhu, X. 2016. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresource Technology, 207, 31-38.
  • [21] Zhao, B., Su, Y., Zhang, Y., Cui, G. 2015. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy, 89, 347-357.
  • [22] Acien Fernandez, F. G., Fernandez Sevilla, J. M., Molina, G. E. 2013. Photobioreactors for the production of microalgae. Reviews in Environmental Science and Biotechnology, 12, 131–151.
  • [23] Acién, F. G., Fernáández, J. M., Magán, J. J., Molina, E. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344-1353.
  • [24] George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., Mishra, S. 2014. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 171, 367–374.
  • [25] Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., Chang, J. S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1), 71-81.
  • [26] Illman, A. M., Scragg, A. H., Shales, S. W. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and microbial technology, 27(8), 631-635.
  • [27] Scragg, A. H., Illman, A. M., Carden, A., Shales, S. W. 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23(1), 67-73.
  • [28] Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., Oh, H. M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101(1), 71-74

Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı

Year 2023, , 239 - 245, 25.08.2023
https://doi.org/10.19113/sdufenbed.1202868

Abstract

Mikroalgal biyoteknoloji, enerji krizi, iklim degǍişikligǍi, çevresel bozulma ve gıda kıtlıgǍı dahil olmak uDžzere guDžnuDžmuDžzde karşılaşılan kuDžresel sorunları, potansiyel olarak çözebilecek verimli bir alternatif olarak kabul edilmektedir. Bunun başlıca nedeni, mikroalglerin büyük miktarda karbondioksiti yakalayarak fotosentez yoluyla doğrudan güneş enerjisini biyokütle içinde muhafaza edilen kimyasal enerjiye dönüştürebilmeleridir. Mikroalgal biyokütle gıda ve hayvan yemi olarak kullanılabildiği gibi biyoyakıt üretiminde de değerlendirilebilir. Bu çalışmada,
laboratuvar ölçeğinde bir fotobiyoreaktör tasarımı yapılarak, bu sistemde farklı mikroalg türlerinin zamana bağlı olarak gelişimi incelenmiştir. Önerilen sistemin ölçek büyütmeyle endüstriyel boyutta uygulanabilir bir tasarıma sahip olması, mikroalgal biyokütle üretimi açısından önemlidir. Ayrıca, eş zamanlı ve paralel fotobiyoreaktörlere hava temini için kullanılan küresel manifold sistemi,
karşılaştırılabilir sonuçların elde edilmesi açısından özgün bir tasarımdır. Farklı alg türlerinin gelişiminin 32 gün optik yoğunluk ölçümleriyle incelendiği deneylerde, alg kültürlerinin yüksek verimliliklerde üretilebileceği görülmüştür. Kullanılan sistemle incelenen Chlorella protothecoides-2 türü için kuru madde konsantrasyonunda, 20 günün sonunda 0,04 g/L’den 1,94 g/L’ye kadar artmak suretiyle yaklaşık 50 katlık bir artış sağlanabildiği gözlenmiştir.

References

  • [1] Adeniyi, O. M., Azimov, U., Burluka, A. 2018. Algae biofuel: current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316-335.
  • [2] Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306.
  • [3] Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., Luque, R. 2018. A review on sustainable production: Recent developments. Journal of Cleaner Production, 181, 42-59.
  • [4] Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., Masojídek, J. 2017. Photobioreactors for the production of microalgae. In Microalgae-based biofuels and bioproducts (pp. 1-44). Woodhead Publishing.
  • [5] Tredici, M. R., Biondi, N., Ponis, E., Rodolfi, L.,Zittelli, G. C. 2009. Advances in microalgal culture for aquaculture feed and other uses. In New technologies in aquaculture (pp. 610-676). Woodhead Publishing.
  • [6] Milledge, J. J. 2011. Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Biotechnology, 10, 31–41.
  • [7] Satyanarayana, K. G., Mariano, A. B., Vargas, J. V. C. 2011. A review on microalgae, a versatile source for sustainable energy and materials. International Journal of Energy Research, 35(4), 291-311.
  • [8] Gouveia, L. 2011. Microalgae as a Feedstock for Biofuels. In Microalgae as a Feedstock for Biofuels (pp. 1-69). Springer, Berlin, Heidelberg.
  • [9] Hemaiswarya, S., Raja, R., Ravi Kumar, R., Ganesan, V., Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8), 1737-1746.
  • [10] Tulli, F., Chini Zittelli, G., Giorgi, G., Poli, B. M., Tibaldi, E., Tredici, M. R. 2012. Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. Journal of Aquatic Food Product Technology, 21(3), 188-197.
  • [11] Wahidin, S., Idris, A., Shaleh, S. R. M. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology, 129, 7-11.
  • [12] Olguín, E. J. 2012. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnology Advances, 30(5), 1031-1046.
  • [13] Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., Simões, M. 2012. Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5), 3043-3053.
  • [14] Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., Li, K., Liu, J., Ruan, R. 2017. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 76, 1163-1175.
  • [15] Shuba, E. S., Kifle, D. 2018. Microalgae to biofuels: Promising alternative and renewable energy, review. Renewable and Sustainable Energy
  • [16] Sun, Y., Huang, Y., Liao, Q., Xia, A., Fu, Q., Zhu, X., & Fu, J. 2018. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. Bioresource Technology, 249, 880-889.
  • [17] De Vree, J. H., Bosma, R., Janssen, M., Barbosa, M. J., Wijffels, R. H. 2015. Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for biofuels, 8(1), 1-12.
  • [18] Pires, J. C., Alvim-Ferraz, M. C., Martins, F. G. 2017. Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews, 79, 248-254.
  • [19] Bahadar, A., & Khan, M. B. 2013. Progress in energy from microalgae: a review. Renewable and Sustainable Energy Reviews, 27, 128-148.
  • [20] Sun, Y., Huang, Y., Liao, Q., Fu, Q., Zhu, X. 2016. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresource Technology, 207, 31-38.
  • [21] Zhao, B., Su, Y., Zhang, Y., Cui, G. 2015. Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy, 89, 347-357.
  • [22] Acien Fernandez, F. G., Fernandez Sevilla, J. M., Molina, G. E. 2013. Photobioreactors for the production of microalgae. Reviews in Environmental Science and Biotechnology, 12, 131–151.
  • [23] Acién, F. G., Fernáández, J. M., Magán, J. J., Molina, E. 2012. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344-1353.
  • [24] George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., Mishra, S. 2014. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 171, 367–374.
  • [25] Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., Chang, J. S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1), 71-81.
  • [26] Illman, A. M., Scragg, A. H., Shales, S. W. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and microbial technology, 27(8), 631-635.
  • [27] Scragg, A. H., Illman, A. M., Carden, A., Shales, S. W. 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23(1), 67-73.
  • [28] Yoo, C., Jun, S. Y., Lee, J. Y., Ahn, C. Y., Oh, H. M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101(1), 71-74
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Abdulkadir Gül 0000-0003-4879-6194

H.soner Altundogan 0000-0003-3328-9667

Publication Date August 25, 2023
Published in Issue Year 2023

Cite

APA Gül, A., & Altundogan, H. (2023). Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 239-245. https://doi.org/10.19113/sdufenbed.1202868
AMA Gül A, Altundogan H. Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2023;27(2):239-245. doi:10.19113/sdufenbed.1202868
Chicago Gül, Abdulkadir, and H.soner Altundogan. “Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 2 (August 2023): 239-45. https://doi.org/10.19113/sdufenbed.1202868.
EndNote Gül A, Altundogan H (August 1, 2023) Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 2 239–245.
IEEE A. Gül and H. Altundogan, “Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 27, no. 2, pp. 239–245, 2023, doi: 10.19113/sdufenbed.1202868.
ISNAD Gül, Abdulkadir - Altundogan, H.soner. “Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/2 (August 2023), 239-245. https://doi.org/10.19113/sdufenbed.1202868.
JAMA Gül A, Altundogan H. Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27:239–245.
MLA Gül, Abdulkadir and H.soner Altundogan. “Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 2, 2023, pp. 239-45, doi:10.19113/sdufenbed.1202868.
Vancouver Gül A, Altundogan H. Mikroalgal Biyokütle Üretimi için Laboratuvar Ölçekli Fotobiyoreaktör Tasarımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27(2):239-45.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.