Research Article
BibTex RIS Cite

The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers

Year 2023, , 411 - 416, 25.12.2023
https://doi.org/10.19113/sdufenbed.1251290

Abstract

As a continuation of previous studies, we give some results about the
neutrosophic integers theory. We first stated that the neutrosophic real numbers
are not closed according to the division operation. Later, we gave divisibility
properties of neutrosophic integers. We have given properties such as the greatest
common divisor for two neutrosophic integers being positive and unique. Then, we
gave the Euclid’s Theorem, Bezout’s Theorem for neutrosophic ingers set Z[I]. It is
known that these concepts are important for number theory in integers set Z.
Finally, it is defined the least common multiple for neutrosophic integers. Finally, a
theorem is given which enables one to easily find the least common multiple of
neutrosophic integers and after a conclusion about the sign of the product of two
neutrosophic integers, a theorem is given that shows the relationship of between
the greatest common divisor with the least common multiple

References

  • [1] Smarandache, F. 1998. A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic. Rehoboth: American Research Press,
  • [2] Kandasamy, W. B., Smarandache, F. 2006. Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures, Hexis, Phoenix, Arizona. N-Algebraic Structures, Hexis, Phoenix, Arizona.
  • [3] Kandasamy W. B., Smarandache, F., 1999. Neutrosophic Rings, Hexis, Phoenix, Arizona.
  • [4] Ceven, Y., Tekin, S., 2020. Some Properties of Neutrosophic Integers, Kırklareli University Journal of Engineering and Science, Vol. 6, 50-59.
  • [5] Yurttakal, A. N., Çeven, Y., 2021. Some Elementary Properties of Neutrosophic Integers, Neutrosophic Sets and Systems, Vol. 41, 1-7.
  • [6] Abobala, M., 2021. Partial Foundation of Neutrosophic Number Theory. Neutrosophic Sets and Systems, Vol. 39, 120-132.
  • [7] Abobala, M., 2020. On Some Neutrosophic Algebraic Equations, Journal of New Theory, 33, 26-32.
  • [8] Sankari, H., Abobala, M., 2020. Neutrosophic Linear Diophantine Equations With Two Variables, Neutrosophic Sets and Systems, Vol 38, 399-408.
  • [9] Abobala, M., Ibrahim, M. A., 2021. An Introduction To Refined Neutrosophic Number Theory, Neutrosophic Sets and Systems, 40-53.
  • [10] Merkepci, H., Hatip, A., 2023. Algorithms for Computing Pythagoras Triples and 4-Tiples in Some Neutrosophic Commutative Rings, International Journal of Neutrosophic Science (IJNS), Vol. 20, No. 03, PP. 107-114.
  • [11] Bal, M., Ahmad, K. D., Ali, R., 2022. A Review On Recent Developments In Neutrosophic Linear Diophantine Equations, Journal of Neutrosophic and Fuzzy Systems (JNFS), Vol. 2, No. 1, PP. 61- 75.
  • [12] Edalatpanah, S. A., 2020. Systems of Neutrosophic Linear Equations, Neutrosophic Sets and Systems, Vol. 33, pp. 92-104.
  • [13] Conrad, K., 2016. The Gaussian integers. http://www.math.uconn.edu/∼kconrad/blurbs,

Nötrosofik Tamsayılarda En Büyük Ortak Bölen ve En Küçük Ortak Kat

Year 2023, , 411 - 416, 25.12.2023
https://doi.org/10.19113/sdufenbed.1251290

Abstract

Bu makalede önceki çalışmaların devamı olarak, nötrosofik tam sayılar teorisi
ile ilgili bazı sonuçlar verilecektir. İlk olarak nötrosofik reel sayıların bölme işlemi
altında kapalı olmadığı ifade edilmiştir. Daha sonra nötrosofik tam sayıların
bölünebilme özellikleri verilmiş, iki nötrosofik tam sayının en büyük ortak
böleninin pozitif ve tek olduğu gösterilmiştir. Sayılar teorisi kuramında tam sayılar
için verilen Euclid ve Bezout teoremlerinin nötrosofik tam sayılar için karşılığı
incelenmiştir. Son olarak iki nötrosofik tam sayının en küçük ortak katı
tanımlanmış ve bu sayının nasıl bulunacağı ile ilgili sonuçlar verilmiştir. İki
nötrosofik tam sayının çarpımının işareti hakkındaki incelemeden sonra en küçük
ortak kat ile en büyük ortak bölen arasındaki ilişki verilmiştir.

References

  • [1] Smarandache, F. 1998. A unifying field in logics. Neutrosophy: neutrosophic probability, set and logic. Rehoboth: American Research Press,
  • [2] Kandasamy, W. B., Smarandache, F. 2006. Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures, Hexis, Phoenix, Arizona. N-Algebraic Structures, Hexis, Phoenix, Arizona.
  • [3] Kandasamy W. B., Smarandache, F., 1999. Neutrosophic Rings, Hexis, Phoenix, Arizona.
  • [4] Ceven, Y., Tekin, S., 2020. Some Properties of Neutrosophic Integers, Kırklareli University Journal of Engineering and Science, Vol. 6, 50-59.
  • [5] Yurttakal, A. N., Çeven, Y., 2021. Some Elementary Properties of Neutrosophic Integers, Neutrosophic Sets and Systems, Vol. 41, 1-7.
  • [6] Abobala, M., 2021. Partial Foundation of Neutrosophic Number Theory. Neutrosophic Sets and Systems, Vol. 39, 120-132.
  • [7] Abobala, M., 2020. On Some Neutrosophic Algebraic Equations, Journal of New Theory, 33, 26-32.
  • [8] Sankari, H., Abobala, M., 2020. Neutrosophic Linear Diophantine Equations With Two Variables, Neutrosophic Sets and Systems, Vol 38, 399-408.
  • [9] Abobala, M., Ibrahim, M. A., 2021. An Introduction To Refined Neutrosophic Number Theory, Neutrosophic Sets and Systems, 40-53.
  • [10] Merkepci, H., Hatip, A., 2023. Algorithms for Computing Pythagoras Triples and 4-Tiples in Some Neutrosophic Commutative Rings, International Journal of Neutrosophic Science (IJNS), Vol. 20, No. 03, PP. 107-114.
  • [11] Bal, M., Ahmad, K. D., Ali, R., 2022. A Review On Recent Developments In Neutrosophic Linear Diophantine Equations, Journal of Neutrosophic and Fuzzy Systems (JNFS), Vol. 2, No. 1, PP. 61- 75.
  • [12] Edalatpanah, S. A., 2020. Systems of Neutrosophic Linear Equations, Neutrosophic Sets and Systems, Vol. 33, pp. 92-104.
  • [13] Conrad, K., 2016. The Gaussian integers. http://www.math.uconn.edu/∼kconrad/blurbs,
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Yilmaz Çeven 0000-0002-2968-1546

Özlem Çetin 0000-0003-2886-3409

Publication Date December 25, 2023
Published in Issue Year 2023

Cite

APA Çeven, Y., & Çetin, Ö. (2023). The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 411-416. https://doi.org/10.19113/sdufenbed.1251290
AMA Çeven Y, Çetin Ö. The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2023;27(3):411-416. doi:10.19113/sdufenbed.1251290
Chicago Çeven, Yilmaz, and Özlem Çetin. “The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, no. 3 (December 2023): 411-16. https://doi.org/10.19113/sdufenbed.1251290.
EndNote Çeven Y, Çetin Ö (December 1, 2023) The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 3 411–416.
IEEE Y. Çeven and Ö. Çetin, “The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 27, no. 3, pp. 411–416, 2023, doi: 10.19113/sdufenbed.1251290.
ISNAD Çeven, Yilmaz - Çetin, Özlem. “The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/3 (December 2023), 411-416. https://doi.org/10.19113/sdufenbed.1251290.
JAMA Çeven Y, Çetin Ö. The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27:411–416.
MLA Çeven, Yilmaz and Özlem Çetin. “The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 27, no. 3, 2023, pp. 411-6, doi:10.19113/sdufenbed.1251290.
Vancouver Çeven Y, Çetin Ö. The Greatest Common Divisors and The Least Common Multiples in Neutrosophic Integers. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27(3):411-6.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.