Research Article
BibTex RIS Cite

Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process

Year 2024, , 105 - 114, 23.08.2024
https://doi.org/10.19113/sdufenbed.1297117

Abstract

Many systems in real life can experience failure in two categories such as a soft failure process or a catastrophic failure process. Therefore, failure processes are competing since either failure can cause the system to fail. In this study, a reliability analysis of a k-out-of-n G system which is exposed to a competing failure process is investigated based on different distribution assumptions for a shock magnitude, a damage size, and a wear volume due to continuous degradation. Besides, unlike the research in this field, in a more statistical frame, the reliability results are also examined in detail by considering normal distribution assumption. The reliability results are discussed based on a change in parameters, number of shocks and time. Graphical illustrations are also provided to observe the parameter effects explicitly on the reliability of the system.

References

  • Gut, A. 1990. Cumulative shock models. Advances in Applied Probability, 22(2), 504-507.
  • Eryilmaz, S., and Kan, C. 2019. Reliability and optimal replacement policy for an extreme shock model with a change point. Reliability Engineering and System Safety, 190, 106513.
  • Wang, Z., Huang, H.Z., Li, Yanfeng., and Xiao, N.C. 2011. An approach to reliability evaluation under degradation and shock process. IEEE Transactions On Reliability, 60(4), 852-863.
  • Li, W., and Pham, H. 2005. Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks. IEEE Transactions on Reliability, 54(2), 297-303.
  • Peng, H., Feng, Q., and Coit, D.W. 2009. Simultaneous quality and reliability optimization for microengines subject to degradation. IEEE Transactions, 58, 98-105.
  • Song, S., Chatwattanasiri, N., Coit, D.W., Feng, Q., and Wattanapongsakorn, N. 2012. Reliability analysis for k-out-of-n systems subject to multiple dependent competing failure processes. IEEE Transactions On Reliability, 36-42.
  • Pham, H., Suprasad, A., and Misra, R.B. 1996. Reliability and MTTF prediction of k-out-of-n complex systems with components subjected to multiple stages of degradation. International Journal of Systems Science, 27(10), 995-1000.
  • Song, S., Coit, D.W., Feng, Q., and Peng, H. 2014. Reliability analysis for multi-component systems subject to multiple dependent competing failure processes. IEEE Transactions on Reliability, 63(1).
  • Rafiee, K., Feng, Q., and Coit, D.W. 2014. Reliability modeling for dependent competing failure processes with changing degradation rate. IEEE Transactions, 46(5), 483-496.
  • Cha, J.H., Sanguesa, C., Castro, I.T. 2016. Maintenance policy for a system with stochastically dependent failure modes with shock-accumulation effect. IEEE Transactions on Reliability, 65(3).
  • An, Z., Sun, D. 2017. Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level. Reliability Engineering and System Safety, 157, 129-138.
  • Fan, M., Zeng, Z., Zio, E., and Kang, R. 2017. Modeling dependent competing failure processes with degradation-shock dependence. Reliability Engineering and System Safety, 165, 422-430.
  • Che, H., Zeng, S., Guo, J., Wang, Y. 2018. Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process. Reliability Engineering and System Safety, 180, 168-178.
  • Shen, J., Elwany, A., and Cui, L. 2018. Reliability analysis for multi-component systems with degradation interaction and categorized shocks. Applied Mathematical Modelling, 56, 487-500.
  • Qiu, Q., Cui, L. 2018. Reliability evaluation based on a dependent two-stage failure process with competing failures. Applied Mathematical Modelling, 64, 699-712.
  • Jiang, L., Feng, Q., and Coit, D.W. 2012. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds. IEEE Transactions on Reliability, 61(4), 932-948.
  • Wang, J., Li, Z., Bai, G., Zuo, M.J. 2020. An improved model for dependent competing risks considering continuous degradation and random shocks. Reliability Engineering and System Safety 193.
  • Gong, M., Eryilmaz, S., and Xie, M. 2019. Reliability evaluation of system under ageneralized cumulative shock model. Proceedings of the Institution of Mechanical Engineers Part of Journal of Risk and Reliability, 234(1).
  • Lorvand, H., Nematollahi, A., and Poursaeed, M.H. 2019. Life distribution properties of a new shock model. Communications in Statistics-Theory and Methods, 49(12), 3010-3025.
  • Tuncel, A., and Eryilmaz, S. 2018. System reliability under -shock model. Communications in Statistics-Theory and Methods, 47(19), 1-9.
  • Eryilmaz, S. 2012. Generalized s-shock model via runs. Statistics and Probability Letters, 82(2), 326-331.
  • Tanner, D. M., and Dugger, M. T. 2003. Wear mechanisms in a reliability methodology. In Proceedings of the Society of Photo-optical Instrumentation Engineers, 4980, 22-40.

Rakip Bozulma Süreçlerine Maruz Kalan bir n'den k çıkışlı: G Sistemine ait İstatistiksel Güvenirlik Değerlendirmesi

Year 2024, , 105 - 114, 23.08.2024
https://doi.org/10.19113/sdufenbed.1297117

Abstract

Gerçek hayatta birçok sistem, yıkıcı olmayan bozulma veya yıkıcı bozulma süreçleri gibi bozulmaları iki kategoride deneyimleyebilirler. Her iki arıza da sistemin bozulmasına sebep olabileceğinden arıza süreçleri rekabet halindedir. Bu çalışmada, rakip bozulma süreçlerine konu olan şok büyüklüğü, hasar boyutu, sürekli bozulmaya sebep olan aşınma hacmi için farklı dağılım varsayımlarına dayalı n’den k çıkışlı G sistem yapısının güvenilirlik analizine yer verilmektedir. Bunun yanında, bu alandaki çalışmalardan farklı olarak, güvenilirlik sonuçları normal dağılım varsayımı altında istatistiki açıdan daha ayrıntılı olarak incelenmiştir. Güvenilirlik sonuçları şok sayısı, zaman ve parametrelerdeki değişim dikkate alınarak tartışılmıştır. Sistem güvenilirliği üzerindeki parametre etkilerini açık bir şekilde gözlemlemek için sonuçlar ayrıca grafikler ile de sunulmuştur.

References

  • Gut, A. 1990. Cumulative shock models. Advances in Applied Probability, 22(2), 504-507.
  • Eryilmaz, S., and Kan, C. 2019. Reliability and optimal replacement policy for an extreme shock model with a change point. Reliability Engineering and System Safety, 190, 106513.
  • Wang, Z., Huang, H.Z., Li, Yanfeng., and Xiao, N.C. 2011. An approach to reliability evaluation under degradation and shock process. IEEE Transactions On Reliability, 60(4), 852-863.
  • Li, W., and Pham, H. 2005. Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks. IEEE Transactions on Reliability, 54(2), 297-303.
  • Peng, H., Feng, Q., and Coit, D.W. 2009. Simultaneous quality and reliability optimization for microengines subject to degradation. IEEE Transactions, 58, 98-105.
  • Song, S., Chatwattanasiri, N., Coit, D.W., Feng, Q., and Wattanapongsakorn, N. 2012. Reliability analysis for k-out-of-n systems subject to multiple dependent competing failure processes. IEEE Transactions On Reliability, 36-42.
  • Pham, H., Suprasad, A., and Misra, R.B. 1996. Reliability and MTTF prediction of k-out-of-n complex systems with components subjected to multiple stages of degradation. International Journal of Systems Science, 27(10), 995-1000.
  • Song, S., Coit, D.W., Feng, Q., and Peng, H. 2014. Reliability analysis for multi-component systems subject to multiple dependent competing failure processes. IEEE Transactions on Reliability, 63(1).
  • Rafiee, K., Feng, Q., and Coit, D.W. 2014. Reliability modeling for dependent competing failure processes with changing degradation rate. IEEE Transactions, 46(5), 483-496.
  • Cha, J.H., Sanguesa, C., Castro, I.T. 2016. Maintenance policy for a system with stochastically dependent failure modes with shock-accumulation effect. IEEE Transactions on Reliability, 65(3).
  • An, Z., Sun, D. 2017. Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level. Reliability Engineering and System Safety, 157, 129-138.
  • Fan, M., Zeng, Z., Zio, E., and Kang, R. 2017. Modeling dependent competing failure processes with degradation-shock dependence. Reliability Engineering and System Safety, 165, 422-430.
  • Che, H., Zeng, S., Guo, J., Wang, Y. 2018. Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process. Reliability Engineering and System Safety, 180, 168-178.
  • Shen, J., Elwany, A., and Cui, L. 2018. Reliability analysis for multi-component systems with degradation interaction and categorized shocks. Applied Mathematical Modelling, 56, 487-500.
  • Qiu, Q., Cui, L. 2018. Reliability evaluation based on a dependent two-stage failure process with competing failures. Applied Mathematical Modelling, 64, 699-712.
  • Jiang, L., Feng, Q., and Coit, D.W. 2012. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds. IEEE Transactions on Reliability, 61(4), 932-948.
  • Wang, J., Li, Z., Bai, G., Zuo, M.J. 2020. An improved model for dependent competing risks considering continuous degradation and random shocks. Reliability Engineering and System Safety 193.
  • Gong, M., Eryilmaz, S., and Xie, M. 2019. Reliability evaluation of system under ageneralized cumulative shock model. Proceedings of the Institution of Mechanical Engineers Part of Journal of Risk and Reliability, 234(1).
  • Lorvand, H., Nematollahi, A., and Poursaeed, M.H. 2019. Life distribution properties of a new shock model. Communications in Statistics-Theory and Methods, 49(12), 3010-3025.
  • Tuncel, A., and Eryilmaz, S. 2018. System reliability under -shock model. Communications in Statistics-Theory and Methods, 47(19), 1-9.
  • Eryilmaz, S. 2012. Generalized s-shock model via runs. Statistics and Probability Letters, 82(2), 326-331.
  • Tanner, D. M., and Dugger, M. T. 2003. Wear mechanisms in a reliability methodology. In Proceedings of the Society of Photo-optical Instrumentation Engineers, 4980, 22-40.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yeşim Aktaş 0000-0002-7351-6425

Funda İşçioğlu 0000-0002-2037-3889

Publication Date August 23, 2024
Published in Issue Year 2024

Cite

APA Aktaş, Y., & İşçioğlu, F. (2024). Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 105-114. https://doi.org/10.19113/sdufenbed.1297117
AMA Aktaş Y, İşçioğlu F. Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. August 2024;28(2):105-114. doi:10.19113/sdufenbed.1297117
Chicago Aktaş, Yeşim, and Funda İşçioğlu. “Statistical Reliability Evaluation of a K-Out-of-N: G System Subject to Competing Failure Process”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 2 (August 2024): 105-14. https://doi.org/10.19113/sdufenbed.1297117.
EndNote Aktaş Y, İşçioğlu F (August 1, 2024) Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 105–114.
IEEE Y. Aktaş and F. İşçioğlu, “Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 28, no. 2, pp. 105–114, 2024, doi: 10.19113/sdufenbed.1297117.
ISNAD Aktaş, Yeşim - İşçioğlu, Funda. “Statistical Reliability Evaluation of a K-Out-of-N: G System Subject to Competing Failure Process”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (August 2024), 105-114. https://doi.org/10.19113/sdufenbed.1297117.
JAMA Aktaş Y, İşçioğlu F. Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:105–114.
MLA Aktaş, Yeşim and Funda İşçioğlu. “Statistical Reliability Evaluation of a K-Out-of-N: G System Subject to Competing Failure Process”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 2, 2024, pp. 105-14, doi:10.19113/sdufenbed.1297117.
Vancouver Aktaş Y, İşçioğlu F. Statistical Reliability Evaluation of a k-out-of-n: G System Subject to Competing Failure Process. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(2):105-14.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.