Cladophora sp. ve Mikoriza Uygulamalarının Mısır Rizosferindeki bazı Toprak Enzimlerine Etkisi
Year 2024,
, 189 - 196, 23.08.2024
Çiğdem Küçük
,
Pınar Uslu
,
Göksal Sezen
Abstract
Bu çalışmada mikoriza mantarı aşılaması ve Cladophora sp. ekstraktı kullanımının ayrı ayrı ve birlikte uygulamalarının mısır bitkilerinin temel bitki büyüme özellikleri, rizosferdeki alkalin fosfataz, dehidrogenaz, üreaz ve β- glukosidaz enzim aktiviteleri üzerine etkileri değerlendirilmiştir. Çalışma serada tesadüf parselleri faktöriyel deneme desenine göre 3 tekrarlı olarak kurulmuştur. Mikoriza (aşısız, 5 g/kg, 10 g/kg,15 g/kg ile aşılı) ve Cladophora sp. (%0, 0.5, 1, 1.5) farklı dozlarda topraklara uygulanmıştır. Uygulamaların etkileri temel bitki büyüme özellikleri üzerinde farklı olmuştur Cladophora sp' nin %1.5'luk ekstraktı ve 15 g/kg mikoriza aşılamasının birlikte uygulanması ile alkalin fosfataz, üreaz, dehidrogenaz enzim aktivitelerinde en yüksek değer elde edilmiştir. Cladophora sp'nin %1'lik ekstratı ve 10 g/kg mikoriza aşılamasının birlikte uygulanması ile en yüksek β-glukosidaz aktivite elde edilmiştir. Mikoriza ve Cladophora sp'nin birlikte uygulanması bitki kök bölgesi yani rizosferdeki bazı enzim aktivitelerini artırarak daha sağlıklı bir rizosfer ile bitki kalitesini artırmak için çevre dostu bir strateji olarak sunabilir.
Ethical Statement
Bu çalışmada, “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması gerekli tüm kurallara uyulduğunu, bahsi geçen yönergenin “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmediğini taahhüt ederiz.
Supporting Institution
Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi Proje No 23078 tarafından desteklenmiştir.
Project Number
Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi Proje No 23078 tarafından desteklenmiştir.
Thanks
Bu çalışmayı destekleyen Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne (Proje No 23078) teşekkür ederiz.
References
- [1] Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Liv,Y.2019. Impact of climate change on crops adaptation and stategies to tackleits outcome: A review. Plants, 8, 34-63.
- [2] FAO, 2021. The impact of disasters and crises on agriculture and food security:2021. (Rome, Italy:FAO)https://openknowledge.fao.org/handle/20.500.14283/cb3673en(Erişim Tarihi: 2021).
- [3] Surjeeth, N., Petrov, V., Guinan, K.J., Rasul, F.,O'Sullivan, J.T., Gechev, T. S. 2022. Current insights into the molecular mode of action of seaweed based biostimulants and the sustainability of seaweeds as raw material resources. International Journal of Molecular Sciences, 23, 7654-7677.
- [4] Patle, P.N., Kadu, P.R., Gabhane, A.R., Pharande, A.L., Bhagat, A.P., Bhoyar, S.M. 2019. Consequences proveked due to excess application of agrochemical on soil healt deterioration. A review for sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8,63-66.
- [5] Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A.K., Manna, M.C. 2020. Impact of agrochemicals on soil health. ss161-187. Prasad, M.N.V. 2020. Agrochemicals detection, treatment and remediation. Oxford, United Kingdom, 665s.
- [6] Verma N, Sehrawat AR, Pandey D, Pandey BK 2020. Seaweed: a novel organic biomaterial. Current Journal of Applied Science Technology, 39, 1–8.
- [7] Suleiman, A.K.A., Lourenço, K.S., Clark, C., 2020. From toiletto agriculture: Fertilization with microalgal biomass from waste water impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resources Conservation Recycling, 161, 104924.
- [8] Santander,C., Aroca, R., Ruiz-Lozano, J.M., Olave, J., Cartes, P., Borie, F., Cornejo, P.2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza, 27, 639-657.
- [9] Pons,C.,VoB.,Schweiger,R.,Müller,C.2020.Effects of drought and mycorrhiza on wheat and aphid infestation. Ecology Evolution, 10, 10481-10491.
- [10] Lingua, G., Bona, E., Manassero, P., Marsano, F., Todeschini, V., Cantamessa, S., Copetta, A., D'Agostino, G., Gamalero, E., Berta, G. 2013. Arbuscular mycorrhizal fungi and plant growth prometing Pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var, Selva) in conditions of reduced fertilization. International Journal of Molecular Science, 14, 16207-16225.
- [11] Bordre, M., Dudhane, M., Jite, P.K. 2009. Role of bioinoculant (AM Fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Notulae Botanicae Horti Agrobotanic Cluj-Napoca, 37, 124-128.
- [12] Dziergowska, K., Welna, M., Szymczycha Madeja, A., Checmamowski, J., Michalak, I. 2021. Valorization of Cladophora glomereta biomass and obtained bioproducts into biostimulants of plant growth and as sorbents (Biosorbents) of metal ions. Molecules, 26,6917-6941.
- [13] Mahmoud, S. H., Salama, D.M., El-Tanahy, A.M.M., Abd El-Samad, E.H. 2019. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals Agricultural Sciences, 64, 167–175.
- [14] Gonzalez-Perez, B.K., Rivas-Castillo, A.M., Valdez-Calderon, A., Gayosso Morales, M.A. 2022. Microalgae as biostimulants: a new approach in agriculture. World Journal of Microbiology & Biotechnology, 38,1–12.
- [15] Chai, Y.N., Schachtman, D.P. 2022. Root exudate simpact plant performance under abiotics tress. Trends Plant Sciences, 27, 80–91.
- [16] Prazukin, A.V., Anufriieva, E.V., Shadrin, N.V. 2020. Is biomass of filamentous greenalgae Cladophoraspp. (Clorophyta, Uivophtceae) an unlimited cheap and valuable resource for medicine and pharmacolgy? A review. Reviews in Aquaculture, 12,2493-2510.
- [17] Michalak,I.,Mesyasz,B.2021.Concise review of Cladophoraspp.: A macroalga of commerical interest. Journal of Applied Phycology, 33,133-136.
- [18] Taşdan, K. 2021. Durum Tahmin Mısır 2021. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, TEPGE, Ankara, Türkiye 43s.
- [19] Doğan, S., Demirel, K., Çamoğlu, G., Nar, H., Akçal, A 2020. Farklı sulama seviyelerinin ceylan gözünün bitkisel özellikleri üzerine etkilerinin belirlenmesi. ÇOMÜ Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 1,1-15.
- [20] Arnon, D.T. 1949. Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
- [21] Küçük, Ç., Şinşek, N. 2020. The effects of different agricultural wastes on some microbiologial properties of soil. EJONS International Journal on Mathematics, Engineering & Natural Sciences, 15, 451-460.
- [22] Sukumar, P. Legue, V., Vayssieres, A., Martin, F.,Tuskan, G.A., Kalluri, U.C. 2013. Involment of auxin pathways in modulating root architecture during beneficial plant microorganism interaction. Plant, Cell and Environment, 36,909-919.
- [23] Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.T. 2017. Biostimulants in plant science: Aglobal perspective. Frontiersin Plant Science, 7,2049.
- [24] Golubkina, N., Logvinenko, L., Novitsky, M.,Zamana,S.,Sokolov, S., Gonzalez-Gonzalez, M. F., Ocampo-Alvarez, H., Santacruz-Ruvalcaba, F., Sanchez-Hernandez, C. V., Casarrubias-Castillo, K., Becerril-Espinosa, A., Castaneda-Nava, J. J., Hernandez-Herrera, R. M. 2020. Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science, 11,1–18.
- [25] Begüm, M., Bordoloi, B.C., Singha, D.D., Ojha, N.J.2018. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Revolution, 39,321-326.
- [26] Hussain, H.I., Kasinadhuni, N., Arioli, T. 2021. The effect of seaweed extract on tomato plant growt, productivity and soil. Journal of Applied Phycology, 33,1305-1314.
- [27] El Chami, D.,Galli, F. 2020. An assessment of seaweed extracts: Innovation for sustainable agriculture. Agronomy, 10, 1433.
- [28] Asadi, M., Rasouli, F., Amini, T., Hassanpouraghdam, M.B., Souri, S., Skrovankova, S., Mlcek, J., Ercisli, S. 2022. Improvement of Photosynthetic Pigment Characteristics, Mineral Content, andAntioxidant Activity of Lettuce (Lactuca sativa L.) by Arbuscular Mycorrhizal Fungus and Seaweed Extract Foliar Application. Agronomy, 12, 1943.
- [29] Carillo, P., Colla, G.,Fusco, G.M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H. 2019. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy, 9, 450.
- [30] Gupta, S., Stirk, W.A., Plackova, L., Kulkarni, M.G., Dolezal, K., Van Staden, J. 2021. Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). Journal of Plant Physiology, 262, 153437.
- [31] Meng, C., Gu, X., Liang, H.,Wu, M.,Wu, Q., Yang, L., Li, Y., Shen, P. 2022. Optimized preparation and high-efficient application of seaweed fertilizer on peanut. Journal of Agricultural and Food Information, 7, 100275.
- [32] Weisany, W., Raei, Y., Pertot, I. 2015. Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products, 77, 295–306.
- [33] Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., Tava, A. 2019. Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9, 192.
- [34] Genava, M., Zehirov, G., Djonova, E., Kaloyanova, N., Georgiev, G., Stancheva, I. 2006. The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant, Soil Environment, 52,435-440.
- [35] El Sawah,A.M., El-Keblawy, A., Ali, D. F. I., İbrahim, H. M., El-Sheik, M. A., Sharma, A., Hamoud, Y. A., Shaghaleh, H., Brestic, M., Skalicky, M., Xiong, Y., Sheteiwy, M. 2021. Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield and qualitative attributes of Guar. Agriculture, 11, 1-19.
- [36] Vazquez, E., Benito, M., Espejo, R., Teutscherova, N. 2020. Response of soil properties and microbial indicators to landuse change in an acid soil under Mediterranean conditions. Catena, 189,10.
- [37] Caldwell, B. A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologica, 49, 637-644.
- [38] Fiorentiono, N., Vertorino, V., Woo, S.L., Pepe, O., De rosa, A., Gioio, L. 2018. Trichoderma-based biostimulants modulate rhizospore microbial population sand improve N uptake efficiency, yield and nutrition alqualty of leafy vegetables. Frontiers in Plant Science, 9,743.
- [39] Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., Colla, G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91–108.
Effect of the Cladophora sp. and Mycorrhiza Applications on Some Soil Enzymes in the Maize Rhizosphere
Year 2024,
, 189 - 196, 23.08.2024
Çiğdem Küçük
,
Pınar Uslu
,
Göksal Sezen
Abstract
In this study, the effects of mycorrhizal fungus inoculation and Cladophora sp. extract, separately and in combination, on the basic plant growth characteristics of maize plants, alkaline phosphatase, dehydrogenase, urease and β-glucosidase enzyme activities in the rhizosphere were evaluated. The study was established in the greenhouse according to randomized plots factorial experimental design with 3 replications. Mycorrhiza (uninoculated, inoculated with 5 g/kg, 10 g/kg, 15 g/kg) and Cladophora sp. (0, 0.5, 1, 1.5%) were applied to the soil at different doses. Uygulamaların etkileri temel bitki büyüme özellikleri üzerinde farklı olmuştur. The highest values of alkaline phosphatase, urease, dehydrogenase enzyme activities were obtained with 1.5% extract of Cladophora sp and 15 g/kg mycorrhiza inoculation. The highest β-glucosidase activity was obtained with 1% extract of Cladophora sp and 10 g/kg mycorrhiza inoculation. Co-application of mycorrhiza and Cladophora sp. can be an environmentally friendly strategy to improve plant quality with a healthier rhizosphere by increasing some enzyme activities in the rhizosphere, the plant root zone.
Project Number
Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi Proje No 23078 tarafından desteklenmiştir.
References
- [1] Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Liv,Y.2019. Impact of climate change on crops adaptation and stategies to tackleits outcome: A review. Plants, 8, 34-63.
- [2] FAO, 2021. The impact of disasters and crises on agriculture and food security:2021. (Rome, Italy:FAO)https://openknowledge.fao.org/handle/20.500.14283/cb3673en(Erişim Tarihi: 2021).
- [3] Surjeeth, N., Petrov, V., Guinan, K.J., Rasul, F.,O'Sullivan, J.T., Gechev, T. S. 2022. Current insights into the molecular mode of action of seaweed based biostimulants and the sustainability of seaweeds as raw material resources. International Journal of Molecular Sciences, 23, 7654-7677.
- [4] Patle, P.N., Kadu, P.R., Gabhane, A.R., Pharande, A.L., Bhagat, A.P., Bhoyar, S.M. 2019. Consequences proveked due to excess application of agrochemical on soil healt deterioration. A review for sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8,63-66.
- [5] Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A.K., Manna, M.C. 2020. Impact of agrochemicals on soil health. ss161-187. Prasad, M.N.V. 2020. Agrochemicals detection, treatment and remediation. Oxford, United Kingdom, 665s.
- [6] Verma N, Sehrawat AR, Pandey D, Pandey BK 2020. Seaweed: a novel organic biomaterial. Current Journal of Applied Science Technology, 39, 1–8.
- [7] Suleiman, A.K.A., Lourenço, K.S., Clark, C., 2020. From toiletto agriculture: Fertilization with microalgal biomass from waste water impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resources Conservation Recycling, 161, 104924.
- [8] Santander,C., Aroca, R., Ruiz-Lozano, J.M., Olave, J., Cartes, P., Borie, F., Cornejo, P.2017. Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza, 27, 639-657.
- [9] Pons,C.,VoB.,Schweiger,R.,Müller,C.2020.Effects of drought and mycorrhiza on wheat and aphid infestation. Ecology Evolution, 10, 10481-10491.
- [10] Lingua, G., Bona, E., Manassero, P., Marsano, F., Todeschini, V., Cantamessa, S., Copetta, A., D'Agostino, G., Gamalero, E., Berta, G. 2013. Arbuscular mycorrhizal fungi and plant growth prometing Pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var, Selva) in conditions of reduced fertilization. International Journal of Molecular Science, 14, 16207-16225.
- [11] Bordre, M., Dudhane, M., Jite, P.K. 2009. Role of bioinoculant (AM Fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Notulae Botanicae Horti Agrobotanic Cluj-Napoca, 37, 124-128.
- [12] Dziergowska, K., Welna, M., Szymczycha Madeja, A., Checmamowski, J., Michalak, I. 2021. Valorization of Cladophora glomereta biomass and obtained bioproducts into biostimulants of plant growth and as sorbents (Biosorbents) of metal ions. Molecules, 26,6917-6941.
- [13] Mahmoud, S. H., Salama, D.M., El-Tanahy, A.M.M., Abd El-Samad, E.H. 2019. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Annals Agricultural Sciences, 64, 167–175.
- [14] Gonzalez-Perez, B.K., Rivas-Castillo, A.M., Valdez-Calderon, A., Gayosso Morales, M.A. 2022. Microalgae as biostimulants: a new approach in agriculture. World Journal of Microbiology & Biotechnology, 38,1–12.
- [15] Chai, Y.N., Schachtman, D.P. 2022. Root exudate simpact plant performance under abiotics tress. Trends Plant Sciences, 27, 80–91.
- [16] Prazukin, A.V., Anufriieva, E.V., Shadrin, N.V. 2020. Is biomass of filamentous greenalgae Cladophoraspp. (Clorophyta, Uivophtceae) an unlimited cheap and valuable resource for medicine and pharmacolgy? A review. Reviews in Aquaculture, 12,2493-2510.
- [17] Michalak,I.,Mesyasz,B.2021.Concise review of Cladophoraspp.: A macroalga of commerical interest. Journal of Applied Phycology, 33,133-136.
- [18] Taşdan, K. 2021. Durum Tahmin Mısır 2021. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, TEPGE, Ankara, Türkiye 43s.
- [19] Doğan, S., Demirel, K., Çamoğlu, G., Nar, H., Akçal, A 2020. Farklı sulama seviyelerinin ceylan gözünün bitkisel özellikleri üzerine etkilerinin belirlenmesi. ÇOMÜ Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 1,1-15.
- [20] Arnon, D.T. 1949. Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
- [21] Küçük, Ç., Şinşek, N. 2020. The effects of different agricultural wastes on some microbiologial properties of soil. EJONS International Journal on Mathematics, Engineering & Natural Sciences, 15, 451-460.
- [22] Sukumar, P. Legue, V., Vayssieres, A., Martin, F.,Tuskan, G.A., Kalluri, U.C. 2013. Involment of auxin pathways in modulating root architecture during beneficial plant microorganism interaction. Plant, Cell and Environment, 36,909-919.
- [23] Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P.T. 2017. Biostimulants in plant science: Aglobal perspective. Frontiersin Plant Science, 7,2049.
- [24] Golubkina, N., Logvinenko, L., Novitsky, M.,Zamana,S.,Sokolov, S., Gonzalez-Gonzalez, M. F., Ocampo-Alvarez, H., Santacruz-Ruvalcaba, F., Sanchez-Hernandez, C. V., Casarrubias-Castillo, K., Becerril-Espinosa, A., Castaneda-Nava, J. J., Hernandez-Herrera, R. M. 2020. Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science, 11,1–18.
- [25] Begüm, M., Bordoloi, B.C., Singha, D.D., Ojha, N.J.2018. Role of seaweed extract on growth, yield and quality of some agricultural crops: A review. Agricultural Revolution, 39,321-326.
- [26] Hussain, H.I., Kasinadhuni, N., Arioli, T. 2021. The effect of seaweed extract on tomato plant growt, productivity and soil. Journal of Applied Phycology, 33,1305-1314.
- [27] El Chami, D.,Galli, F. 2020. An assessment of seaweed extracts: Innovation for sustainable agriculture. Agronomy, 10, 1433.
- [28] Asadi, M., Rasouli, F., Amini, T., Hassanpouraghdam, M.B., Souri, S., Skrovankova, S., Mlcek, J., Ercisli, S. 2022. Improvement of Photosynthetic Pigment Characteristics, Mineral Content, andAntioxidant Activity of Lettuce (Lactuca sativa L.) by Arbuscular Mycorrhizal Fungus and Seaweed Extract Foliar Application. Agronomy, 12, 1943.
- [29] Carillo, P., Colla, G.,Fusco, G.M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H. 2019. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy, 9, 450.
- [30] Gupta, S., Stirk, W.A., Plackova, L., Kulkarni, M.G., Dolezal, K., Van Staden, J. 2021. Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). Journal of Plant Physiology, 262, 153437.
- [31] Meng, C., Gu, X., Liang, H.,Wu, M.,Wu, Q., Yang, L., Li, Y., Shen, P. 2022. Optimized preparation and high-efficient application of seaweed fertilizer on peanut. Journal of Agricultural and Food Information, 7, 100275.
- [32] Weisany, W., Raei, Y., Pertot, I. 2015. Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products, 77, 295–306.
- [33] Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., Tava, A. 2019. Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9, 192.
- [34] Genava, M., Zehirov, G., Djonova, E., Kaloyanova, N., Georgiev, G., Stancheva, I. 2006. The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant, Soil Environment, 52,435-440.
- [35] El Sawah,A.M., El-Keblawy, A., Ali, D. F. I., İbrahim, H. M., El-Sheik, M. A., Sharma, A., Hamoud, Y. A., Shaghaleh, H., Brestic, M., Skalicky, M., Xiong, Y., Sheteiwy, M. 2021. Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield and qualitative attributes of Guar. Agriculture, 11, 1-19.
- [36] Vazquez, E., Benito, M., Espejo, R., Teutscherova, N. 2020. Response of soil properties and microbial indicators to landuse change in an acid soil under Mediterranean conditions. Catena, 189,10.
- [37] Caldwell, B. A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologica, 49, 637-644.
- [38] Fiorentiono, N., Vertorino, V., Woo, S.L., Pepe, O., De rosa, A., Gioio, L. 2018. Trichoderma-based biostimulants modulate rhizospore microbial population sand improve N uptake efficiency, yield and nutrition alqualty of leafy vegetables. Frontiers in Plant Science, 9,743.
- [39] Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., Colla, G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91–108.