Research Article
BibTex RIS Cite

Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot

Year 2024, , 386 - 399, 23.12.2024
https://doi.org/10.19113/sdufenbed.1539617

Abstract

Bu çalışmada, iyonofor olan diklorobis(metildifenilfosfin)paladyum(II) kompleksinin kullanıldığı yeni bir tiyosiyanat-seçici katı-temaslı nanokompozit elektrot hazırlandı. Bazı metal oksit nanopartiküllerinin karbon pasta bileşimine eklenmesiyle hazırlanan bu elektrodun en iyi performans özelliklerinin sergilendiği optimum bileşim % 11,6 grafit tozu, % 34,8 iyonofor, % 13,0 o-nitrofenil oktileter (o-NPOE), % 31,9 tetraheptilamonyum tetrafenilborat (THATFB) ve % 8,7 kobalt oksit nanopartikülleri (Co3O4 NP) olarak bulundu. Nanokompozit elektrodun çalışma aralığı, eğimi, kullanım ömrü, alt tayin sınırı ve cevap süresi sırasıyla 1,0×10-1-1,0×10-6 moldm-3, 59,7±0,6 mV/pSCN, en az 2 ay, 1,4×10-8 moldm-3, 5 s’dir. Ayrıca, farklı anyonların varlığında pH 4,0’da ayrı çözelti yöntemiyle hesaplanan seçicilik katsayılarının sırası karbonat> salisilat> perklorat> iyodür> klorür> nitrat> nitrit> sülfit> bromür> asetat> florür olarak bulundu. Tiyosiyanat tayini için iyi çalışan bir indikatör elektrot olduğu bir veteriner ilaç numunesinde gösterildi.

Supporting Institution

İnönü Üniversitesi ve Ankara Üniversitesi

Project Number

İnönü Üniversitesi BAP FDK-2022-2949 nolu proje ile Ankara Üniversitesi BAP FYL-2024-3282 nolu proje

Thanks

Bu çalışmanın yürütülmesi sırasında malzeme desteği sağlayan İnönü Üniversitesi BAP FDK-2022-2949 nolu proje ile Ankara Üniversitesi BAP FYL-2024-3282 nolu proje için Bilimsel Araştırma Projesi Koordinatörlüklerine ve çalışmalarımızı yapabilmemiz için laboratuvarlarını kullanma imkanı sunan Ankara Üniversitesi Fen Fakültesi Kimya Bölümü’ne teşekkür ederiz.

References

  • [1] Reboiras, M. D. 1996. Electrochemical properties of cellulosic ion-exchange membranes III. Application to ion-selective electrodes. Journal of membrane science, 114(1), 105-113.
  • [2] Zatirakha, A. V., Smolenkov, A. D., Shpigun, O. A. 2016. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review. Analytica chimica acta, 904, 33-50.
  • [3] Rutz, C., Schmolke, L., Gvilava, V., Janiak, C. 2017. Anion analysis of ionic liquids and ionic liquid purity assessment by ion chromatography. Zeitschrift für anorganische und allgemeine Chemie, 643(1), 130-135.
  • [4] Yang, J., Cao, Y., Zhang, N. 2020. Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, 118556.
  • [5] Liang, CF Huang, N Mohanty, RM Kurakalva 2008. A rapid spectrophotometric determination of persulfate anion in ISCOC- Chemosphere, 73(9):1540-1543.
  • [6] Gong B., Gong G., Fluorimetric method for the determination of thiocyanate with 2′,7′-dichlorofluorescein and iodine 1999. Anal. Chim. Acta Volume 394, Issues 2–3, Pages 171-175.
  • [7] Ozoemena, K. I., Nyokong, T. 2005. Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalytic oxidation and detection of thiocyanate. Journal of Electroanalytical Chemistry, 579(2), 283-289.
  • [8] Hein, R., Beer, P. D., Davis, J. J. 2020. Electrochemical anion sensing: supramolecular approaches. Chemical reviews, 120(3), 1888-1935.
  • [9] Titretir, S., Erdoğdu, G., Karagözler, A. E. 2006. Determination of iodide ions at poly (3-methylthiophene)-modified electrode by differential pulse stripping voltammetry. Journal of Analytical Chemistry, 61, 592-595.
  • [10] Pagliano, E., Campanella, B., D'Ulivo, A., Mester, Z. 2018. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography-a review. Analytica chimica acta, 1025, 12-40.
  • [11] Lin, F. M., Wu, H. L., Kou, H. S., Lin, S. J. 2003. Highly sensitive analysis of iodide anion in seaweed as pentafluorophenoxyethyl derivative by capillary gas chromatography. Journal of agricultural and food chemistry, 51(4), 867-870.
  • [12] Martinez-Manez, R., Sancenon, F. 2003. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical reviews, 103(11), 4419-4476.
  • [13] Işıldak, O., Yıldız, I. 2023. Highly selective potentiometric determination of nitrate ions using silver bisdiethyldithiocarbamate based membrane electrodes. Electrochimica Acta, 459, 142587.
  • [14] Manandhar, S., Yrjänä, V., Leito, I., Bobacka, J. 2024. Determination of benzoate in cranberry and lingonberry by using a solid-contact benzoate-selective electrode. Talanta, 274, 125996.
  • [15] Ayanoğlu, M. N., Kormalı Ertürün, H. E., Demirel Özel, A., Şahin, Ö., Yılmaz, M., Kılıç, E. 2015. Salicylate Ion‐Selective Electrode Based on a Calix [4] arene as Ionophore. Electroanalysis, 27(7), 1676-1684.
  • [16] Ertürün, H. E. K., Özel, A. D., Ayanoğlu, M. N., Şahin, Ö., Yılmaz, M. 2017. A calix [4] arene derivative-doped perchlorate-selective membrane electrodes with/without multi-walled carbon nanotubes. Ionics, 23, 917-927.
  • [17] Karimipour, G., Gharaghani, S., Ahmadpour, R. 2012. Bis (trans-cinnamaldehyde)-1, 3-propanediimine) mercury (II) chloride, [Hg (BPPPB) Cl 2] as Carrier for Construction of Iodide Selective Electrode. Journal of Chemistry, 9, 2565-2574.
  • [18] El-Kosasy, A. M., Rahman, M. H. A., Abdelaal, S. H. 2019. Graphene nanoplatelets in potentiometry: A nanocomposite carbon paste and PVC based membrane sensors for analysis of Vilazodone HCl in plasma and milk samples. Talanta, 193, 9-14.
  • [19] El‐Sanafery, S. S., Abbas, A. A., Mohamed, G. G. 2022. Chemical modified carbon paste electrode for potentiometric determination of Mo (VI) and its application in food analysis and agriculture fertilizers. Electroanalysis, 34(5), 872-882.
  • [20] Aslaner, S. İ., Demirel Özel, A. 2022. The use of nanocomposite approach in the construction of carbon paste electrode and its application for the potentiometric determination of iodide. Monatshefte für Chemie-Chemical Monthly, 153(10), 881-893.
  • [21] Muratoğlu, S., Ertürün, H. E. K., Özel, A. D., 2018. Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 237-246.
  • [22] Bakker, E., Pretsch, E. 2005. Potentiometric sensors for trace-level analysis. TrAC Trends in Analytical Chemistry, 24(3), 199-207.
  • [23] Ghaedi, H., Afkhami, A., Madrakian, T., &Soltani-Felehgari, F. 2016. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Materials Science and Engineering: C, 59, 847-854.
  • [24] Gautam, V., Srivastava, A., Singh, K. P., Yadav, V. L. 2017. Preparation and characterization of polyaniline, multiwall carbon nanotubes, and starch bionanocomposite material for potential bioanalytical applications. Polymer Composites, 38(3), 496-506.
  • [25] Abdallah, N. A. 2021. Novel Potentiometric Solid‐Contact Electrode for the determination of Fe2+ ions via MWCNTs‐Gemifloxacin composite. Electroanalysis, 33(5), 1283-1289.
  • [26] Atta, N. F., Galal, A., El-Ads, E. H., Hassan, S. H. 2019. Cobalt oxide nanoparticles/graphene/ionic liquid crystal modified carbon paste electrochemical sensor for ultra-sensitive determination of a narcotic drug. Advanced Pharmaceutical Bulletin, 9(1), 110-121.
  • [27] Afkhami, A., Shirzadmehr, A., Madrakian, T. 2014. Improvement in performance of a hyoscine butylbromide potentiometric sensor using a new nanocomposite carbon paste: a comparison study with polymeric membrane sensor. Ionics, 20, 1145-1154.
  • [28] Alizadeh, T., Zargr, F. 2020. Highly selective and sensitive iodide sensor based on carbon paste electrode modified with nanosized sulfate-doped α-Fe2O3. Materials Chemistry and Physics, 240, 122118.
  • [29] Mazloum-Ardakani, M., Beitollahi, H., Amini, M. K., Mirkhalaf, F., Abdollahi-Alibeik, M. 2010. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sensors and Actuators B: Chemical, 151(1), 243-249.
  • [30] Afkhami, A., Soltani-Felehgari, F., Madrakian, T. 2013. Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochimica acta, 103, 125-133.
  • [31] Zhou, Y., Yang, L., Li, S., Dang, Y. 2017. A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sensors and Actuators B: Chemical, 245, 238-246.
  • [32] Savari, Z., Soltanian, S., Noorbakhsh, A., Salimi, A., Najafi, M., Servati, P. 2013. High sensitivity amperometric and voltammetric determination of persulfate with neutral red/nickel oxide nanowires modified carbon paste electrodes. Sensors and Actuators B: Chemical, 176, 335-343.
  • [33] Asefa, T., Duncan, C. T., Sharma, K. K. 2009. Recent advances in nanostructured chemosensors and biosensors. Analyst, 134(10), 1980-1990.
  • [34] Chen, S. H., Yang, Z. Y., Wu, H. L., Kou, H. S., Lin, S. J. 1996. Determination of thiocyanate anion by high-performance liquid chromatography with fluorimetric detection. Journal of analytical toxicology, 20(1), 38-42.
  • [35] Connolly, D., Barron, L., Paull, B. 2002. Determination of urinary thiocyanate and nitrate using fast ion-interaction chromatography. Journal of Chromatography B, 767(1), 175-180.
  • [36] Han, W. S., Hong, T. K., Lee, Y. H. 2011. Thiocyanate ion-selective solid contact electrode based on Mn complex of N, N'-bis-(4-phenylazosalicylidene)-o-phenylene diamine ionophore. American Journal of Analytical Chemistry, 2(06), 731-738.
  • [37] Pena-Pereira, F., Lavilla, I., Bendicho, C. 2016. based analytical device for instrumental-free detection of thiocyanate in saliva as a biomarker of tobacco smoke exposure. Talanta, 147, 390-396.
  • [38] Yang, P., Wei, W., Tao, C. 2007. Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 585(2), 331-336.
  • [39] Bernabéu JA, Camacho MA 2001. Procedure to evaluate the stability during processing and storage of a medicated premix and medicated farm feed: erythromycin thiocyanate, Journal of agricultural and food chemistry, 49(8), 3709-3712.
  • [40] Ognean, L., Chiurciu, V., Cernea, C., Trîncă, S., Oroian, R. 2011. The Evaluation of Therapeutic Doses of Erythromycin on the Main Hematological Parameters of Broiler Chickens. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 68(1), 277-284.
  • [41] Nivas, S. C., Sunde, M. L., Bird, H. R. 1967. Erythromycin Thiocyanate and the Performance of Laying Hens 1. Poultry Science, 46(5), 1103-1108.
  • [42] Shuaib, A. C. A., Beswick, G., Tomlins, R. I. 1981. The thiocyanate ion (SCN−) content of eggs from hens (Gallus domesticus) fed on a diet containing rapeseed meal. Journal of the Science of Food and Agriculture, 32(4), 347-352.
  • [43] Özalp, E. 2007. Tiyosiyanat Bellekli Polimer Sistemlerinin Hazırlanması. Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 87s, Eskişehir.
  • [44] Bakker, E., Bühlmann, P., Pretsch, E. 1997. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chemical reviews, 97(8), 3083-3132.
  • [45] Amini, M. K., Rafi, A., Ghaedi, M., Habibi, M. H., Zohory, M. M. 2003. Bis (2-mercaptobenzoxazolato) mercury (II) and bis (2-pyridinethiolato) mercury (II) complexes as carriers for thiocyanate selective electrodes. Microchemical journal, 75(3), 143-150.
  • [46] Schaller, U., Bakker, E., Spichiger, U. E., Pretsch, E. (1994). Ionic additives for ion-selective electrodes based on electrically charged carriers. Analytical Chemistry, 66(3), 391-398.
  • [47] Shehab, O. R., Mansour, A. M. 2014. New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: Experimental and theoretical studies. Biosensors and Bioelectronics, 57, 77-84.
  • [48] Xu, W. J., Chai, Y. Q., Yuan, R., Liu, S. L. 2006. A novel thiocyanate-selective electrode based on a zinc–phthalocyanine complex. Analytical and bioanalytical chemistry, 385, 926-930.
  • [49] Amini, M.K., Shahrokhian, S., Tangestaninejad, S. 1999. PVC-based cobalt and manganese phthalocyanine coated graphite electrodes for determination of thiocyanate. Analytical letters, 32(14), 2737-2750.
  • [50] Brown, D. V., Chaniotakis, N. A., Lee, I. H., Ma, S. C., Park, S. B., Meyerhoff, M. E., ... Groves, J.T. 1989. Mn (III)—porphyrin‐based thiocyanate‐selective membrane electrodes: Characterization and application in flow injection determination of thiocyanate in saliva. Electroanalysis, 1(6), 477-484.
  • [51] Ardakani, M. M., Sadeghi, A., Salavati-Niasari, M. 2005. Highly selective thiocyanate membrane electrode based on butane-2, 3-dione bis (salicylhydrazonato) zinc (II) complex. Talanta, 66(4), 837-843.
  • [52] El Aamrani, F. Z., Garcı́a-Raurich, J., Sastre, A., Beyer, L., & Florido, A. 1999. PVC membranes based on silver (I)–thiourea complexes. Analytica chimica acta, 402(1-2), 129-135.
  • [53] Xu, G., Dong, W. L., Ren, L. Y. 2012. Research and application of thiocyanate-selective electrodes based on copper (II) complex with ethylene-diamine-bis-(salicylaldehyde) base as carrier. Advanced Materials Research, 396, 2230-2233.
  • [54] Hassan, S. S., Abou Ghalia, M. H., Amr, A. G. E., Mohamed, A. H. 2003. Novel thiocyanate-selective membrane sensors based on di-, tetra-, and hexa-imidepyridine ionophores. Analytica chimica acta, 482(1), 9-18.
  • [55] Arvand, M., Zanjanchi, M.A., Heydari, L. 2007. Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore. Sensors and Actuators B: Chemical, 122(1), 301-308.
  • [56] Erden, S., Demirel, A., Memon, S., Yılmaz, M., Canel, E., Kılıç, E. 2006. Using of hydrogen ion-selective poly (vinyl chloride) membrane electrode based on calix [4] arene as thiocyanate ion-selective electrode. Sensors and Actuators B: Chemical, 113(1), 290-296.
  • [57] Abdel‐Haleem, F. M., Shehab, O. R. 2016. Comparative Study of Carbon Paste, Screen Printed, and PVC Potentiometric Sensors Based on Copper‐sulphamethazine Schiff Base Complex for Determination of Iodide–Experimental and Theoretical Approaches. Electroanalysis, 28(4), 800-807.
  • [58] Xu, W. J., Zhang, Y., Chai, Y. Q., Yuan, R. 2009. Preparation and characterization of thiocyanate-selective electrodes based on new complexes of copper (II) as neutral carriers. Desalination, 249(1), 139-142.
  • [59] Mortazavi, K., Ghaedi, M., Montazerozohori, M., Andikaey, Z. 2011. Iodide–Selective Electrodes Based on Bis (Trans-Cinnamaldehyde) 1, 3-Propanediimine Mercury (II) Chloride [BCPHgCl2] and Bis (Trans-Cinnamaldehyde)-1, 3-Propandiimine Cadmium (II) Chloride [BCPCdCl2] Carriers: Influence of Multiwalled Carbon Nanotubes on the Response Performance. International Journal of Electrochemical Science, 6(9), 4250-4263.
  • [60] Benvidi, A., Ghanbarzadeh, M.T., Mazloum-Ardakani, M. and Vafazadeh, R. 2011. Iodide-selective polymeric membrane electrode based on copper(II) bis(N-2-bromophenyl salicyldenaminato) complex. Chin. Chem. Lett., 22, 1087–1090.
  • [61] Eugster, R., Gehrig, P.M., Morf, W. E., Spichiger, U. E., & Simon, W. 1991. Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes. Analytical chemistry, 63(20), 2285-2289.
  • [62] Abbaspour, A., Izadyar, A. 2007. Carbon nanotube composite coated platinum electrode for detection of Cr (III) in real samples. Talanta, 71(2), 887-892.
  • [63] Guo, J., Chai, Y., Yuan, R., Song, Z., Zou, Z. 2011. Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: Application to lead content determination in environmental samples. Sensors and Actuators B: Chemical, 155(2), 639-645.
  • [64] Anderson E.L., Bühlmann P., 2016. Electrochemical Impedance Spectroscopy of Ion-SelectiveMembranes: Artifacts in Two‑, Three‑, and Four-ElectrodeMeasurements. Anal Chem 88(19):9738-9745.
  • [65] Magnusson B., Örnemark U., 2014. Eurachem Guide: The Fitness for Purpose of Analytical Methods –A Laboratory Guide to Method Validation and Related Topics, 2nd, edition., Eurachem, Belgium, 70p.
  • [66] Elgamouz A, Shehadi I, Assal A, Bihi A, Kawde A.N., 2021. J Electroanal Chem 895,115443.

A Novel Solid-Contact Nanocomposite Electrode Prepared For Potentiometric Determination Of Thiocyanate

Year 2024, , 386 - 399, 23.12.2024
https://doi.org/10.19113/sdufenbed.1539617

Abstract

In this study, a new thiocyanate-selective solid-contact nanocomposite electrode was prepared by using dichlorobis(methyldiphenylphosphine) palladium(II) complex as ionophore. The optimum composition exhibiting the best performance characteristics of this electrode, constructed by adding some metal oxide nanoparticles to the carbon paste composition, was found as 11.6 % graphite powder, 34.8 % ionophore, 13.0 % o-nitrophenyl octylether (o-NPOE), 31.9 % tetraheptylammonium tetraphenylborate (THATFB) and 8.7 % cobalt oxide nanoparticles (Co3O4 NP). The linear range, the slope, the lifetime, the detection limit, and the response time of the nanocomposite electrode are 1.0×10-1 - 1.0×10-6 moldm-3, 59.7±0.6 mV/pSCN, at least 2 months, 1.4×10-8 moldm-3 and 5 s, respectively. Furthermore, the order of the selectivity coefficients calculated by the separate solution method in the presence of other anions at pH 4.0 was found as carbonate> salicylate> perchlorate> iodide> chloride> nitrate> nitrite> sulfite> bromide> acetate> fluoride. It was shown to be a well-functioning indicator electrode for the quantification of thiocyanate in a veterinary drug sample.

Project Number

İnönü Üniversitesi BAP FDK-2022-2949 nolu proje ile Ankara Üniversitesi BAP FYL-2024-3282 nolu proje

References

  • [1] Reboiras, M. D. 1996. Electrochemical properties of cellulosic ion-exchange membranes III. Application to ion-selective electrodes. Journal of membrane science, 114(1), 105-113.
  • [2] Zatirakha, A. V., Smolenkov, A. D., Shpigun, O. A. 2016. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review. Analytica chimica acta, 904, 33-50.
  • [3] Rutz, C., Schmolke, L., Gvilava, V., Janiak, C. 2017. Anion analysis of ionic liquids and ionic liquid purity assessment by ion chromatography. Zeitschrift für anorganische und allgemeine Chemie, 643(1), 130-135.
  • [4] Yang, J., Cao, Y., Zhang, N. 2020. Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, 118556.
  • [5] Liang, CF Huang, N Mohanty, RM Kurakalva 2008. A rapid spectrophotometric determination of persulfate anion in ISCOC- Chemosphere, 73(9):1540-1543.
  • [6] Gong B., Gong G., Fluorimetric method for the determination of thiocyanate with 2′,7′-dichlorofluorescein and iodine 1999. Anal. Chim. Acta Volume 394, Issues 2–3, Pages 171-175.
  • [7] Ozoemena, K. I., Nyokong, T. 2005. Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalytic oxidation and detection of thiocyanate. Journal of Electroanalytical Chemistry, 579(2), 283-289.
  • [8] Hein, R., Beer, P. D., Davis, J. J. 2020. Electrochemical anion sensing: supramolecular approaches. Chemical reviews, 120(3), 1888-1935.
  • [9] Titretir, S., Erdoğdu, G., Karagözler, A. E. 2006. Determination of iodide ions at poly (3-methylthiophene)-modified electrode by differential pulse stripping voltammetry. Journal of Analytical Chemistry, 61, 592-595.
  • [10] Pagliano, E., Campanella, B., D'Ulivo, A., Mester, Z. 2018. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography-a review. Analytica chimica acta, 1025, 12-40.
  • [11] Lin, F. M., Wu, H. L., Kou, H. S., Lin, S. J. 2003. Highly sensitive analysis of iodide anion in seaweed as pentafluorophenoxyethyl derivative by capillary gas chromatography. Journal of agricultural and food chemistry, 51(4), 867-870.
  • [12] Martinez-Manez, R., Sancenon, F. 2003. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical reviews, 103(11), 4419-4476.
  • [13] Işıldak, O., Yıldız, I. 2023. Highly selective potentiometric determination of nitrate ions using silver bisdiethyldithiocarbamate based membrane electrodes. Electrochimica Acta, 459, 142587.
  • [14] Manandhar, S., Yrjänä, V., Leito, I., Bobacka, J. 2024. Determination of benzoate in cranberry and lingonberry by using a solid-contact benzoate-selective electrode. Talanta, 274, 125996.
  • [15] Ayanoğlu, M. N., Kormalı Ertürün, H. E., Demirel Özel, A., Şahin, Ö., Yılmaz, M., Kılıç, E. 2015. Salicylate Ion‐Selective Electrode Based on a Calix [4] arene as Ionophore. Electroanalysis, 27(7), 1676-1684.
  • [16] Ertürün, H. E. K., Özel, A. D., Ayanoğlu, M. N., Şahin, Ö., Yılmaz, M. 2017. A calix [4] arene derivative-doped perchlorate-selective membrane electrodes with/without multi-walled carbon nanotubes. Ionics, 23, 917-927.
  • [17] Karimipour, G., Gharaghani, S., Ahmadpour, R. 2012. Bis (trans-cinnamaldehyde)-1, 3-propanediimine) mercury (II) chloride, [Hg (BPPPB) Cl 2] as Carrier for Construction of Iodide Selective Electrode. Journal of Chemistry, 9, 2565-2574.
  • [18] El-Kosasy, A. M., Rahman, M. H. A., Abdelaal, S. H. 2019. Graphene nanoplatelets in potentiometry: A nanocomposite carbon paste and PVC based membrane sensors for analysis of Vilazodone HCl in plasma and milk samples. Talanta, 193, 9-14.
  • [19] El‐Sanafery, S. S., Abbas, A. A., Mohamed, G. G. 2022. Chemical modified carbon paste electrode for potentiometric determination of Mo (VI) and its application in food analysis and agriculture fertilizers. Electroanalysis, 34(5), 872-882.
  • [20] Aslaner, S. İ., Demirel Özel, A. 2022. The use of nanocomposite approach in the construction of carbon paste electrode and its application for the potentiometric determination of iodide. Monatshefte für Chemie-Chemical Monthly, 153(10), 881-893.
  • [21] Muratoğlu, S., Ertürün, H. E. K., Özel, A. D., 2018. Paladyum Komplekslerine Dayalı İyodür-Seçici Karbon Pasta Elektrot Hazırlanması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 237-246.
  • [22] Bakker, E., Pretsch, E. 2005. Potentiometric sensors for trace-level analysis. TrAC Trends in Analytical Chemistry, 24(3), 199-207.
  • [23] Ghaedi, H., Afkhami, A., Madrakian, T., &Soltani-Felehgari, F. 2016. Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Materials Science and Engineering: C, 59, 847-854.
  • [24] Gautam, V., Srivastava, A., Singh, K. P., Yadav, V. L. 2017. Preparation and characterization of polyaniline, multiwall carbon nanotubes, and starch bionanocomposite material for potential bioanalytical applications. Polymer Composites, 38(3), 496-506.
  • [25] Abdallah, N. A. 2021. Novel Potentiometric Solid‐Contact Electrode for the determination of Fe2+ ions via MWCNTs‐Gemifloxacin composite. Electroanalysis, 33(5), 1283-1289.
  • [26] Atta, N. F., Galal, A., El-Ads, E. H., Hassan, S. H. 2019. Cobalt oxide nanoparticles/graphene/ionic liquid crystal modified carbon paste electrochemical sensor for ultra-sensitive determination of a narcotic drug. Advanced Pharmaceutical Bulletin, 9(1), 110-121.
  • [27] Afkhami, A., Shirzadmehr, A., Madrakian, T. 2014. Improvement in performance of a hyoscine butylbromide potentiometric sensor using a new nanocomposite carbon paste: a comparison study with polymeric membrane sensor. Ionics, 20, 1145-1154.
  • [28] Alizadeh, T., Zargr, F. 2020. Highly selective and sensitive iodide sensor based on carbon paste electrode modified with nanosized sulfate-doped α-Fe2O3. Materials Chemistry and Physics, 240, 122118.
  • [29] Mazloum-Ardakani, M., Beitollahi, H., Amini, M. K., Mirkhalaf, F., Abdollahi-Alibeik, M. 2010. New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode. Sensors and Actuators B: Chemical, 151(1), 243-249.
  • [30] Afkhami, A., Soltani-Felehgari, F., Madrakian, T. 2013. Gold nanoparticles modified carbon paste electrode as an efficient electrochemical sensor for rapid and sensitive determination of cefixime in urine and pharmaceutical samples. Electrochimica acta, 103, 125-133.
  • [31] Zhou, Y., Yang, L., Li, S., Dang, Y. 2017. A novel electrochemical sensor for highly sensitive detection of bisphenol A based on the hydrothermal synthesized Na-doped WO3 nanorods. Sensors and Actuators B: Chemical, 245, 238-246.
  • [32] Savari, Z., Soltanian, S., Noorbakhsh, A., Salimi, A., Najafi, M., Servati, P. 2013. High sensitivity amperometric and voltammetric determination of persulfate with neutral red/nickel oxide nanowires modified carbon paste electrodes. Sensors and Actuators B: Chemical, 176, 335-343.
  • [33] Asefa, T., Duncan, C. T., Sharma, K. K. 2009. Recent advances in nanostructured chemosensors and biosensors. Analyst, 134(10), 1980-1990.
  • [34] Chen, S. H., Yang, Z. Y., Wu, H. L., Kou, H. S., Lin, S. J. 1996. Determination of thiocyanate anion by high-performance liquid chromatography with fluorimetric detection. Journal of analytical toxicology, 20(1), 38-42.
  • [35] Connolly, D., Barron, L., Paull, B. 2002. Determination of urinary thiocyanate and nitrate using fast ion-interaction chromatography. Journal of Chromatography B, 767(1), 175-180.
  • [36] Han, W. S., Hong, T. K., Lee, Y. H. 2011. Thiocyanate ion-selective solid contact electrode based on Mn complex of N, N'-bis-(4-phenylazosalicylidene)-o-phenylene diamine ionophore. American Journal of Analytical Chemistry, 2(06), 731-738.
  • [37] Pena-Pereira, F., Lavilla, I., Bendicho, C. 2016. based analytical device for instrumental-free detection of thiocyanate in saliva as a biomarker of tobacco smoke exposure. Talanta, 147, 390-396.
  • [38] Yang, P., Wei, W., Tao, C. 2007. Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 585(2), 331-336.
  • [39] Bernabéu JA, Camacho MA 2001. Procedure to evaluate the stability during processing and storage of a medicated premix and medicated farm feed: erythromycin thiocyanate, Journal of agricultural and food chemistry, 49(8), 3709-3712.
  • [40] Ognean, L., Chiurciu, V., Cernea, C., Trîncă, S., Oroian, R. 2011. The Evaluation of Therapeutic Doses of Erythromycin on the Main Hematological Parameters of Broiler Chickens. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Veterinary Medicine, 68(1), 277-284.
  • [41] Nivas, S. C., Sunde, M. L., Bird, H. R. 1967. Erythromycin Thiocyanate and the Performance of Laying Hens 1. Poultry Science, 46(5), 1103-1108.
  • [42] Shuaib, A. C. A., Beswick, G., Tomlins, R. I. 1981. The thiocyanate ion (SCN−) content of eggs from hens (Gallus domesticus) fed on a diet containing rapeseed meal. Journal of the Science of Food and Agriculture, 32(4), 347-352.
  • [43] Özalp, E. 2007. Tiyosiyanat Bellekli Polimer Sistemlerinin Hazırlanması. Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 87s, Eskişehir.
  • [44] Bakker, E., Bühlmann, P., Pretsch, E. 1997. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chemical reviews, 97(8), 3083-3132.
  • [45] Amini, M. K., Rafi, A., Ghaedi, M., Habibi, M. H., Zohory, M. M. 2003. Bis (2-mercaptobenzoxazolato) mercury (II) and bis (2-pyridinethiolato) mercury (II) complexes as carriers for thiocyanate selective electrodes. Microchemical journal, 75(3), 143-150.
  • [46] Schaller, U., Bakker, E., Spichiger, U. E., Pretsch, E. (1994). Ionic additives for ion-selective electrodes based on electrically charged carriers. Analytical Chemistry, 66(3), 391-398.
  • [47] Shehab, O. R., Mansour, A. M. 2014. New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: Experimental and theoretical studies. Biosensors and Bioelectronics, 57, 77-84.
  • [48] Xu, W. J., Chai, Y. Q., Yuan, R., Liu, S. L. 2006. A novel thiocyanate-selective electrode based on a zinc–phthalocyanine complex. Analytical and bioanalytical chemistry, 385, 926-930.
  • [49] Amini, M.K., Shahrokhian, S., Tangestaninejad, S. 1999. PVC-based cobalt and manganese phthalocyanine coated graphite electrodes for determination of thiocyanate. Analytical letters, 32(14), 2737-2750.
  • [50] Brown, D. V., Chaniotakis, N. A., Lee, I. H., Ma, S. C., Park, S. B., Meyerhoff, M. E., ... Groves, J.T. 1989. Mn (III)—porphyrin‐based thiocyanate‐selective membrane electrodes: Characterization and application in flow injection determination of thiocyanate in saliva. Electroanalysis, 1(6), 477-484.
  • [51] Ardakani, M. M., Sadeghi, A., Salavati-Niasari, M. 2005. Highly selective thiocyanate membrane electrode based on butane-2, 3-dione bis (salicylhydrazonato) zinc (II) complex. Talanta, 66(4), 837-843.
  • [52] El Aamrani, F. Z., Garcı́a-Raurich, J., Sastre, A., Beyer, L., & Florido, A. 1999. PVC membranes based on silver (I)–thiourea complexes. Analytica chimica acta, 402(1-2), 129-135.
  • [53] Xu, G., Dong, W. L., Ren, L. Y. 2012. Research and application of thiocyanate-selective electrodes based on copper (II) complex with ethylene-diamine-bis-(salicylaldehyde) base as carrier. Advanced Materials Research, 396, 2230-2233.
  • [54] Hassan, S. S., Abou Ghalia, M. H., Amr, A. G. E., Mohamed, A. H. 2003. Novel thiocyanate-selective membrane sensors based on di-, tetra-, and hexa-imidepyridine ionophores. Analytica chimica acta, 482(1), 9-18.
  • [55] Arvand, M., Zanjanchi, M.A., Heydari, L. 2007. Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore. Sensors and Actuators B: Chemical, 122(1), 301-308.
  • [56] Erden, S., Demirel, A., Memon, S., Yılmaz, M., Canel, E., Kılıç, E. 2006. Using of hydrogen ion-selective poly (vinyl chloride) membrane electrode based on calix [4] arene as thiocyanate ion-selective electrode. Sensors and Actuators B: Chemical, 113(1), 290-296.
  • [57] Abdel‐Haleem, F. M., Shehab, O. R. 2016. Comparative Study of Carbon Paste, Screen Printed, and PVC Potentiometric Sensors Based on Copper‐sulphamethazine Schiff Base Complex for Determination of Iodide–Experimental and Theoretical Approaches. Electroanalysis, 28(4), 800-807.
  • [58] Xu, W. J., Zhang, Y., Chai, Y. Q., Yuan, R. 2009. Preparation and characterization of thiocyanate-selective electrodes based on new complexes of copper (II) as neutral carriers. Desalination, 249(1), 139-142.
  • [59] Mortazavi, K., Ghaedi, M., Montazerozohori, M., Andikaey, Z. 2011. Iodide–Selective Electrodes Based on Bis (Trans-Cinnamaldehyde) 1, 3-Propanediimine Mercury (II) Chloride [BCPHgCl2] and Bis (Trans-Cinnamaldehyde)-1, 3-Propandiimine Cadmium (II) Chloride [BCPCdCl2] Carriers: Influence of Multiwalled Carbon Nanotubes on the Response Performance. International Journal of Electrochemical Science, 6(9), 4250-4263.
  • [60] Benvidi, A., Ghanbarzadeh, M.T., Mazloum-Ardakani, M. and Vafazadeh, R. 2011. Iodide-selective polymeric membrane electrode based on copper(II) bis(N-2-bromophenyl salicyldenaminato) complex. Chin. Chem. Lett., 22, 1087–1090.
  • [61] Eugster, R., Gehrig, P.M., Morf, W. E., Spichiger, U. E., & Simon, W. 1991. Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes. Analytical chemistry, 63(20), 2285-2289.
  • [62] Abbaspour, A., Izadyar, A. 2007. Carbon nanotube composite coated platinum electrode for detection of Cr (III) in real samples. Talanta, 71(2), 887-892.
  • [63] Guo, J., Chai, Y., Yuan, R., Song, Z., Zou, Z. 2011. Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: Application to lead content determination in environmental samples. Sensors and Actuators B: Chemical, 155(2), 639-645.
  • [64] Anderson E.L., Bühlmann P., 2016. Electrochemical Impedance Spectroscopy of Ion-SelectiveMembranes: Artifacts in Two‑, Three‑, and Four-ElectrodeMeasurements. Anal Chem 88(19):9738-9745.
  • [65] Magnusson B., Örnemark U., 2014. Eurachem Guide: The Fitness for Purpose of Analytical Methods –A Laboratory Guide to Method Validation and Related Topics, 2nd, edition., Eurachem, Belgium, 70p.
  • [66] Elgamouz A, Shehadi I, Assal A, Bihi A, Kawde A.N., 2021. J Electroanal Chem 895,115443.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Electroanalytical Chemistry, Sensor Technology
Journal Section Articles
Authors

Ummahan Aktaş 0000-0003-4174-4383

Ayça Demirel Özel 0000-0002-7129-0370

Sezen İrem Kaftanoğlu 0000-0001-8163-7078

Serap Titretir Duran 0000-0001-8361-9818

Project Number İnönü Üniversitesi BAP FDK-2022-2949 nolu proje ile Ankara Üniversitesi BAP FYL-2024-3282 nolu proje
Publication Date December 23, 2024
Submission Date August 28, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2024

Cite

APA Aktaş, U., Demirel Özel, A., Kaftanoğlu, S. İ., Titretir Duran, S. (2024). Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 386-399. https://doi.org/10.19113/sdufenbed.1539617
AMA Aktaş U, Demirel Özel A, Kaftanoğlu Sİ, Titretir Duran S. Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2024;28(3):386-399. doi:10.19113/sdufenbed.1539617
Chicago Aktaş, Ummahan, Ayça Demirel Özel, Sezen İrem Kaftanoğlu, and Serap Titretir Duran. “Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no. 3 (December 2024): 386-99. https://doi.org/10.19113/sdufenbed.1539617.
EndNote Aktaş U, Demirel Özel A, Kaftanoğlu Sİ, Titretir Duran S (December 1, 2024) Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 3 386–399.
IEEE U. Aktaş, A. Demirel Özel, S. İ. Kaftanoğlu, and S. Titretir Duran, “Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 28, no. 3, pp. 386–399, 2024, doi: 10.19113/sdufenbed.1539617.
ISNAD Aktaş, Ummahan et al. “Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/3 (December 2024), 386-399. https://doi.org/10.19113/sdufenbed.1539617.
JAMA Aktaş U, Demirel Özel A, Kaftanoğlu Sİ, Titretir Duran S. Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:386–399.
MLA Aktaş, Ummahan et al. “Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 28, no. 3, 2024, pp. 386-99, doi:10.19113/sdufenbed.1539617.
Vancouver Aktaş U, Demirel Özel A, Kaftanoğlu Sİ, Titretir Duran S. Potansiyometrik Tiyosiyanat Tayini için Hazırlanan Yeni Bir Katı-Temaslı Nanokompozit Elektrot. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(3):386-99.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.