Research Article
BibTex RIS Cite

Development of a 3rd Order Model for Low Voltage Ride Through Capability in DFIG Based Wind Turbines

Year 2025, Volume: 29 Issue: 1, 201 - 209, 25.04.2025
https://doi.org/10.19113/sdufenbed.1646657

Abstract

Grid connected Doubly Fed Induction Generator (DFIG) based wind turbines are highly affected by transient stability conditions such as symmetric and asymmetric faults. In order for the DFIG to remain connected to the grid in case of transient stability for a certain period of time, a grid code requirement for Low Voltage Ride Through (LVRT) Capability is needed. For this purpose, it is necessary to create a dynamic model-based simulation of DFIG. In this study, it is aimed to develop a 3rd order model in creating a dynamic model in DFIG. In addition to stator dynamics, rotor dynamic modeling is developed in this study. Comparisons of the developed 3rd order model with the traditionally used 5th order model are made for 3 phase fault, 2 phase fault and 1 phase ground fault situations. Parameters used were 34.5 kV bus voltage, DFIG output voltage, angular speed and active power. As a result of the results obtained, it was seen that the 3rd degree model developed gave better results than the 5th degree model in stabilizing the system in a short time and damping the oscillations.

References

  • [1] Döşoğlu, M. K. 2020. Enhancement of Dynamic Modeling for LVRT Capability in DFIG-based Wind Turbines. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 1345-1356.
  • [2] El Makrini, A., El Karkri, Y., Boukhriss, Y., El Markhi, H., & El Moussaoui, H. 2017. LVRT Control Strategy of DFIG based Wind Turbines Combining Passive and Active Protection. International Journal of Energy Research, 7, 1258-1269.
  • [3] Döşoğlu, K. 2020. A Novel Low Voltage Ride Through Capability Strategy for DFIG based Wind Turbines. Uluslararası Teknolojik Bilimler Dergisi, 12(1), 34-44.
  • [4] Senapati, M. K., Pradhan, C., Nayak, P. K., Padmanaban, S., & Gjengedal, T. 2020. Modified Demagnetisation Control Strategy for Low‐Voltage Ride‐through Enhancement in DFIG‐based Wind Systems. IET Renewable Power Generation, 14(17), 3487-3499.
  • [5] Ma, Y., Zhu, D., Zhu, H., Hu, J., Zou, X., & Kang, Y. 2024. Transient Stability Analysis and Enhancement of DFIG-based Wind Turbine with Demagnetization Control During Grid Fault. IEEE Transactions on Industry Applications, 61(1), 1031-1042.
  • [6] Yang L., Xu Z., Ostergaard J., Dong Z. Y., Wong K. P. 2012. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through. IEEE Transactions on Power Systems, 27, 713-722.
  • [7] Loulijat, A., Chojaa, H., El Marghichi, M., Ettalabi, N., Hilali, A., Mouradi, A., ..., &Mossa, M. A. 2023. Enhancement of LVRT Ability of DFIG Wind Turbine by an Improved Protection Scheme with a Modified Advanced Nonlinear Control Loop. Processes, 11(5), 1417.
  • [8] Hu S., Lin X., Kang Y., & Zou X. 2011. An Improved Low-Voltage Ride-Through Control Strategy of Doubly Fed Induction Generatör During Grid Faults, IEEE Transactions on Power Electronics, 26, 3653-3665.
  • [9] Döşoğlu, M. K. 2021. Hybrid Control Approach for Low-Voltage Ride-Through Capability in Doubly-Fed Induction Generator-based Wind Turbines. Computers & Electrical Engineering, 90, 106972.
  • [10] Gomis-Bellmunt O., Junyent-Ferre A., Sumper A., & Bergas-Jan J. 2008. Ride-Through Control of a Doubly Fed Induction Generator under Unbalanced Voltage Sags, IEEE Transactions on Energy Conversion, 23, 1036-1045.
  • [11] Ding, C., Chen, Y., & Nie, T. (2021). LVRT control strategy for asymmetric faults of DFIG based on improved MPCC method. IEEE Access, 9, 165207-165218.
  • [12] Yang, R. H., Jin, J. X., & Abu-Siada, A. 2020. DFIG Protection with Rotor-Side SMES and Negative Sequence Control under Voltage Unbalance. International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) 1-2, IEEE.
  • [13] Luo, J., Zhao, H., Gao, S., & Han, M. 2020. A Low Voltage Ride Through Strategy of DFIG based on Explicit Model Predictive Control. International Journal of Electrical Power & Energy Systems, 119, 105783.
  • [14] Ding, C., Chen, Y., & Nie, T. 2021. LVRT Control Strategy for Asymmetric Faults of DFIG based on Improved MPCC Method. IEEE Access, 9, 165207-165218.
  • [15] Fernandez L. M., Jurado F., & Saenz J. R., 2008. Aggregated Dynamic Model for Wind Farms with Doubly Fed Induction Generator Wind Turbines, Renewable Energy, 33, 129-140.
  • [16] Ekanayake J. B., Holdsworth L., Wu X., & Jenkins N. 2003. Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines, IEEE Transaction on Power Systems, 18, 803-809.
  • [17] Fernandez L.M., Garcia C. A., Saenz J. R., &Jurado F. 2009. Equivalent Models for Wind Farms by using Aggreagated Wind Turbines and Equivalent Winds, Energy Conversion and Management, 50, 3, 691-704.
  • [18] Krause, P. C., Wasynczuk, O., & Sudhoff, S. D. 1995. Analysis of electric machinery. Piscataway.
  • [19] Döşoğlu, M. K. 2020. Crowbar Hardware Design Enhancement for Fault Ride Through Capability in Doubly Fed Induction Generator-based Wind Turbines. ISA transactions, 104, 321-328.
  • [20] Ekanayake, J. B., Holdsworth, L., & Jenkins, N. 2003. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research, 67(3), 207-215.
  • [21] Huang, H., Ju, P., Pan, X., Jin, Y., Yuan, X., & Gao, Y. 2019. Phase–amplitude model for doubly fed induction generators. Journal of Modern Power Systems and Clean Energy, 7, 369-379.
  • [22] Garcia-Gracia, M., Comech, M. P., Sallan, J., & Llombart, A. 2008. Modelling wind farms for grid disturbance studies. Renewable energy, 33(9), 2109-2121.
  • [23] Rona, B. & Güler, Ö. 2015. Power system integration of wind farms and analysis of grid code requirements. Renewable and Sustainable Energy Reviews, 49, 100-107.

Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi

Year 2025, Volume: 29 Issue: 1, 201 - 209, 25.04.2025
https://doi.org/10.19113/sdufenbed.1646657

Abstract

Şebekeye bağlı Çift Beslemeli Asenkron Generatör (ÇBAG) tabanlı rüzgar türbinleri simetrik ve asimetrik arıza gibi geçici kararlılık durumlarından çok etkilenmektedir. Belirli bir süre geçici kararlılık durumunda ÇBAG’ın şebekeye bağlı kalması için Düşük Gerilim İyileştirme Yeteneği (DGİY) için şebeke kod gereksinimine ihtiyaç olmaktadır. Bunun için ÇBAG’ın dinamik model tabanlı benzetiminin oluşturulması gereklidir. Yapılan bu çalışmada, ÇBAG’da dinamik model oluşturulmasında 3. derece modelinin geliştirilmesi amaçlanmıştır. Stator dinamiğinin yanı sıra rotor dinamik modellemesi de bu çalışmada geliştirilmiştir. Geliştirilen 3. derece model ile geleneksel olarak kullanılan 5. derece modelin karşılaştırmaları 3 faz arızası 2 faz arızası ve 1 faz toprak arızası durumları için yapılmıştır. Parametreler olarak 34.5 kV bara gerilimi, ÇBAG çıkış gerilimi, açısal hız ve aktif güç kullanılmıştır. Elde edilen sonuçlar neticesinde, sistemin kısa sürede kararlı hale gelmesi ve salınımların sönümlenmesinde geliştirilen 3. derece modelin 5. derece modele göre daha iyi sonuçlar verdiği görülmüştür.

References

  • [1] Döşoğlu, M. K. 2020. Enhancement of Dynamic Modeling for LVRT Capability in DFIG-based Wind Turbines. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 1345-1356.
  • [2] El Makrini, A., El Karkri, Y., Boukhriss, Y., El Markhi, H., & El Moussaoui, H. 2017. LVRT Control Strategy of DFIG based Wind Turbines Combining Passive and Active Protection. International Journal of Energy Research, 7, 1258-1269.
  • [3] Döşoğlu, K. 2020. A Novel Low Voltage Ride Through Capability Strategy for DFIG based Wind Turbines. Uluslararası Teknolojik Bilimler Dergisi, 12(1), 34-44.
  • [4] Senapati, M. K., Pradhan, C., Nayak, P. K., Padmanaban, S., & Gjengedal, T. 2020. Modified Demagnetisation Control Strategy for Low‐Voltage Ride‐through Enhancement in DFIG‐based Wind Systems. IET Renewable Power Generation, 14(17), 3487-3499.
  • [5] Ma, Y., Zhu, D., Zhu, H., Hu, J., Zou, X., & Kang, Y. 2024. Transient Stability Analysis and Enhancement of DFIG-based Wind Turbine with Demagnetization Control During Grid Fault. IEEE Transactions on Industry Applications, 61(1), 1031-1042.
  • [6] Yang L., Xu Z., Ostergaard J., Dong Z. Y., Wong K. P. 2012. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through. IEEE Transactions on Power Systems, 27, 713-722.
  • [7] Loulijat, A., Chojaa, H., El Marghichi, M., Ettalabi, N., Hilali, A., Mouradi, A., ..., &Mossa, M. A. 2023. Enhancement of LVRT Ability of DFIG Wind Turbine by an Improved Protection Scheme with a Modified Advanced Nonlinear Control Loop. Processes, 11(5), 1417.
  • [8] Hu S., Lin X., Kang Y., & Zou X. 2011. An Improved Low-Voltage Ride-Through Control Strategy of Doubly Fed Induction Generatör During Grid Faults, IEEE Transactions on Power Electronics, 26, 3653-3665.
  • [9] Döşoğlu, M. K. 2021. Hybrid Control Approach for Low-Voltage Ride-Through Capability in Doubly-Fed Induction Generator-based Wind Turbines. Computers & Electrical Engineering, 90, 106972.
  • [10] Gomis-Bellmunt O., Junyent-Ferre A., Sumper A., & Bergas-Jan J. 2008. Ride-Through Control of a Doubly Fed Induction Generator under Unbalanced Voltage Sags, IEEE Transactions on Energy Conversion, 23, 1036-1045.
  • [11] Ding, C., Chen, Y., & Nie, T. (2021). LVRT control strategy for asymmetric faults of DFIG based on improved MPCC method. IEEE Access, 9, 165207-165218.
  • [12] Yang, R. H., Jin, J. X., & Abu-Siada, A. 2020. DFIG Protection with Rotor-Side SMES and Negative Sequence Control under Voltage Unbalance. International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) 1-2, IEEE.
  • [13] Luo, J., Zhao, H., Gao, S., & Han, M. 2020. A Low Voltage Ride Through Strategy of DFIG based on Explicit Model Predictive Control. International Journal of Electrical Power & Energy Systems, 119, 105783.
  • [14] Ding, C., Chen, Y., & Nie, T. 2021. LVRT Control Strategy for Asymmetric Faults of DFIG based on Improved MPCC Method. IEEE Access, 9, 165207-165218.
  • [15] Fernandez L. M., Jurado F., & Saenz J. R., 2008. Aggregated Dynamic Model for Wind Farms with Doubly Fed Induction Generator Wind Turbines, Renewable Energy, 33, 129-140.
  • [16] Ekanayake J. B., Holdsworth L., Wu X., & Jenkins N. 2003. Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines, IEEE Transaction on Power Systems, 18, 803-809.
  • [17] Fernandez L.M., Garcia C. A., Saenz J. R., &Jurado F. 2009. Equivalent Models for Wind Farms by using Aggreagated Wind Turbines and Equivalent Winds, Energy Conversion and Management, 50, 3, 691-704.
  • [18] Krause, P. C., Wasynczuk, O., & Sudhoff, S. D. 1995. Analysis of electric machinery. Piscataway.
  • [19] Döşoğlu, M. K. 2020. Crowbar Hardware Design Enhancement for Fault Ride Through Capability in Doubly Fed Induction Generator-based Wind Turbines. ISA transactions, 104, 321-328.
  • [20] Ekanayake, J. B., Holdsworth, L., & Jenkins, N. 2003. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research, 67(3), 207-215.
  • [21] Huang, H., Ju, P., Pan, X., Jin, Y., Yuan, X., & Gao, Y. 2019. Phase–amplitude model for doubly fed induction generators. Journal of Modern Power Systems and Clean Energy, 7, 369-379.
  • [22] Garcia-Gracia, M., Comech, M. P., Sallan, J., & Llombart, A. 2008. Modelling wind farms for grid disturbance studies. Renewable energy, 33(9), 2109-2121.
  • [23] Rona, B. & Güler, Ö. 2015. Power system integration of wind farms and analysis of grid code requirements. Renewable and Sustainable Energy Reviews, 49, 100-107.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Power Plants
Journal Section Research Article
Authors

Enes Kaymaz 0000-0002-4774-0773

Mehmet Kenan Döşoğlu 0000-0001-8804-7070

Submission Date February 25, 2025
Acceptance Date March 25, 2025
Publication Date April 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 1

Cite

APA Kaymaz, E., & Döşoğlu, M. K. (2025). Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 201-209. https://doi.org/10.19113/sdufenbed.1646657
AMA Kaymaz E, Döşoğlu MK. Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi. J. Nat. Appl. Sci. April 2025;29(1):201-209. doi:10.19113/sdufenbed.1646657
Chicago Kaymaz, Enes, and Mehmet Kenan Döşoğlu. “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği Için 3. Derece Modelinin Geliştirilmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 1 (April 2025): 201-9. https://doi.org/10.19113/sdufenbed.1646657.
EndNote Kaymaz E, Döşoğlu MK (April 1, 2025) Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 201–209.
IEEE E. Kaymaz and M. K. Döşoğlu, “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi”, J. Nat. Appl. Sci., vol. 29, no. 1, pp. 201–209, 2025, doi: 10.19113/sdufenbed.1646657.
ISNAD Kaymaz, Enes - Döşoğlu, Mehmet Kenan. “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği Için 3. Derece Modelinin Geliştirilmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (April2025), 201-209. https://doi.org/10.19113/sdufenbed.1646657.
JAMA Kaymaz E, Döşoğlu MK. Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi. J. Nat. Appl. Sci. 2025;29:201–209.
MLA Kaymaz, Enes and Mehmet Kenan Döşoğlu. “Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği Için 3. Derece Modelinin Geliştirilmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 1, 2025, pp. 201-9, doi:10.19113/sdufenbed.1646657.
Vancouver Kaymaz E, Döşoğlu MK. Çift Beslemeli Asenkron Generatör Tabanlı Rüzgar Türbinlerinde Düşük Gerilim İyileştirme Yeteneği için 3. Derece Modelinin Geliştirilmesi. J. Nat. Appl. Sci. 2025;29(1):201-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.