Research Article
BibTex RIS Cite

Yenilikçi Biyoaktif Zirkonya Cam Seramikleri: Radyasyon Koruması ve Biyouyumluluğun Birleşimi

Year 2025, Volume: 29 Issue: 2, 366 - 374, 25.08.2025
https://doi.org/10.19113/sdufenbed.1691010

Abstract

Bu çalışma, Mishra ve ark. (2024) tarafından gerçekleştirilen ilk sentez ve karakterizasyon çalışmalarını genişleterek, SiO₂–Na₂O–CaO–P₂O₅ sistemine dayalı zirkonya katkılı şeffaf cam seramikleri (TGC) potansiyel radyasyon zırhalama malzemeleri olarak incelemektedir. Araştırma, kalsiyum oksitin (CaO) zirkonyum dioksit (ZrO₂) ile mol %0’dan mol %6’ya kadar artan oranlarda ardışık olarak ikame edilmesinin etkilerini değerlendirir. Çalışmamız, ZrO₂ katkılamasının özellikle yoğunluk ve yapısal sıkılık gibi kritik radyasyon zayıflatma parametrelerini nasıl etkilediğini irdeleyerek önceki bulguları derinleştirmektedir. Bu zirkonya katkılı TGC’lerin kütle zayıflatma katsayıları (MAC), 0,015 MeV ile 15 MeV arasındaki foton enerjisi aralığında Phy-X/PSD yazılımı ve PHITS 3.22 Monte Carlo simülasyon kodu kullanılarak belirlenmiştir. Elde edilen simülasyon sonuçları ile teorik öngörüler arasında güçlü bir uyum tespit edilmiştir. Buna dayanarak yarı değer tabakası (HVL), onda bir değer tabakası (TVL), doğrusal zayıflatma katsayısı (LAC), efektif atom numarası (Z_eff), ortalama serbest yol (MFP) ve elektron yoğunluğu (N_eff) gibi kritik koruyucu parametreler Phy-X/PSD aracılığıyla hesaplanan kütle zayıflatma katsayıları kullanılarak değerlendirilmiştir. Bulgular, MAC ve LAC, Z_eff ve N_eff değerlerinin foton enerjisindeki artışla birlikte azaldığını, buna karşın MFP, HVL ve TVL değerlerinin foton enerjisi arttıkça yükseldiğini ortaya koymuştur.Sonuçlar, artan ZrO₂ derişimiyle birlikte malzeme yoğunluğunun arttığını, molar hacmin azaldığını ve yapısal sıkılığın iyileştiğini; tüm bunların da daha iyi radyasyon kalkanlama yeteneğine katkı sağladığını göstermektedir. Zirkonya (ZrO₂) katkılı şeffaf cam seramikler gamma ışınlarına karşı geliştirilmiş zayıflatma performansı sergilemekte olup, test edilen örnekler arasında BG4 kodlu cam seramik en yüksek koruyuculuk etkinliğini sunmuştur.

References

  • [1] Hussein, K. I., et al. 2022. Optical and radiation shielding properties for novel glass material: TeO₂/Nb₂O₅/Ta₂O₅/La₂O₃. CL, 19(6), 417-427.
  • [2] Usman, I., Mohd Sanusi, M. S., Ahmad, N. E., Thabit, H. A. 2024. Optical, thermal, and radiation shielding characterization of bismuth-modified zinc-lithium-tungsten-borate glass. Physica Scripta, 99(12), 125972.
  • [3] Ruengsri, S. 2014. Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Science and Technology of Nuclear Installations, 2014, 1-5.
  • [4] Beall, G. H., et al. 2017. Zirconia-toughened glass ceramics. Patent WO2017223561A1. https://patents.google.com/patent/WO2017223561A1/en (Erişim Tarihi: 03.05.2025).
  • [5] Pasiut, K., Partyka, J. 2017. The influence of ZrO₂ addition on the thermal properties of glass–ceramic materials from SiO₂–Al₂O₃–Na₂O–K₂O–CaO system. Journal of Thermal Analysis and Calorimetry, 130(1), 343-350.
  • [6] Xing, Z., Pang, Y., Li, Q. B. E., Zhang, J. Y., Xu, D. 2024. Modification of zirconia with hydroxyapatite for bioactive enhancement as dental implants. Research Square Preprint.
  • [7] Xing, Z., Pang, Y., Li, E., Zhang, J. Y., Xu, D. 2024. Preparation and characterisation of zirconia/hydroxyapatite bioactive composites as potential dental implants. Journal of Materials Science: Materials in Engineering, 19(1), 43.
  • [8] Sivasankar, M. V., Chinta, M. L., Rao, P. S. 2024. Zirconia based composite scaffolds and their application in bone tissue engineering. International Journal of Biological Macromolecules, 130, 558.
  • [9] Wang, B., et al. 2024. 3D printed zirconia ceramic tool for bone repair with multifunction of drug release, drilling and implantation. Ceramics International, 50(18), 33143-33152.
  • [10] Han, M.-K. 2024. Advances and challenges in zirconia-based materials for dental applications. Journal of the Korean Ceramic Society, 61(5), 783-799.
  • [11] Kılıçoğlu, O., Mehmetcik, H. 2021. Science mapping for radiation shielding research. Radiation Physics and Chemistry, 189, 109721.
  • [12] Mishra, R. K., et al. 2024. Fabrication of bioactive transparent glass ceramics 55SiO₂–25Na₂O–(15-x)CaO–5P₂O₅–xZrO₂ (0 ≤ x ≤ 6): physical, structural and in-vitro cell viability insights for biomedical applications. Ceramics International, 50(9), 14550-14570.
  • [13] Özdoğan, H., Kacal, M. R., Kılıçoğlu, O., Polat, H., Öğül, H., Akman, F. 2025. Experimental, simulation, and theoretical investigations of gamma and neutron shielding characteristics for composites reinforced with boron carbide and titanium oxide. Radiation Physics and Chemistry, 226, 112167.
  • [14] Sayyed, M. I., Almuqrin, A. H., Kurtuluş, R., Javier-Hila, A. M. V., Kaky, K., Kavas, T. 2021. X-ray shielding characteristics of P₂O₅–Nb₂O₅ glass doped with Bi₂O₃ by using EPICS2017 and Phy-X/PSD. Applied Physics A, 127(4), 243.
  • [15] Kılıçoğlu, O. 2019. Characterization of copper oxide and cobalt oxide substituted bioactive glasses for gamma and neutron shielding applications. Ceramics International, 45(17), 23619-23631.
  • [16] Kılıçoğlu, O., Tekin, H. O. 2020. Bioactive glasses with TiO₂ additive: behaviour characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8), 10779-10787.
  • [17] Kılıçoğlu, O., Tekin, H. O. 2020. Bioactive glasses and direct effect of increased K₂O additive for nuclear shielding performance: a comparative investigation. Ceramics International, 46(2), 1323-1333.
  • [18] Kılıçoğlu, O., et al. 2022. Micro Pb filled polymer composites: theoretical, experimental and simulation results for γ-ray shielding performance. Radiation Physics and Chemistry, 194, 110039.

Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility

Year 2025, Volume: 29 Issue: 2, 366 - 374, 25.08.2025
https://doi.org/10.19113/sdufenbed.1691010

Abstract

Abstract: This study examines zirconia-doped transparent glass ceramics (TGCs) based on the SiO₂–Na₂O–CaO–P₂O₅ system as potential radiation shielding materials, expanding on the initial synthesis and characterization by Mishra et al. (2024). The research specifically investigates the effects of incrementally substituting calcium oxide (CaO) with zirconium dioxide (ZrO₂) in concentrations from 0 to 6 mol%. Our work builds upon prior research by evaluating how ZrO₂ doping influences crucial radiation attenuation parameters, particularly density and structural compactness. The mass attenuation coefficients of these zirconia-doped TGCs were determined by utilizing Phy-X/PSD software and the PHITS 3.22 Monte Carlo simulation code across a photon energy range of 0.015 MeV to 15 MeV. A strong alignment was detected between the simulated results and theoretical predictions. Critical shielding parameters—including the half-value layer (HVL), tenth-value layer (TVL), linear attenuation coefficient (LAC), effective atomic number (Zeff), mean free path (MFP), and electron density (Neff)—were consequently evaluated via Phy-X/PSD software, relying on the calculated mass attenuation coefficients. The findings demonstrated that the MAC and LAC, Zeff, and Neff presented a decline in correlation with a rise in photon energy, while MFP, HVL and TVL have increased alongside the rise in photon energy. The findings demonstrate a direct relationship between increased ZrO₂ concentration and enhanced material density, reduced molar volume, and improved structural compactness, all of which contribute to better radiation shielding capabilities. Zirconia (ZrO₂)-doped transparent glass ceramics (TGCs) exhibit improved gamma-ray shielding performance, with the BG4-labeled glass ceramic displaying the highest shielding efficiency among the samples tested.

References

  • [1] Hussein, K. I., et al. 2022. Optical and radiation shielding properties for novel glass material: TeO₂/Nb₂O₅/Ta₂O₅/La₂O₃. CL, 19(6), 417-427.
  • [2] Usman, I., Mohd Sanusi, M. S., Ahmad, N. E., Thabit, H. A. 2024. Optical, thermal, and radiation shielding characterization of bismuth-modified zinc-lithium-tungsten-borate glass. Physica Scripta, 99(12), 125972.
  • [3] Ruengsri, S. 2014. Radiation shielding properties comparison of Pb-based silicate, borate, and phosphate glass matrices. Science and Technology of Nuclear Installations, 2014, 1-5.
  • [4] Beall, G. H., et al. 2017. Zirconia-toughened glass ceramics. Patent WO2017223561A1. https://patents.google.com/patent/WO2017223561A1/en (Erişim Tarihi: 03.05.2025).
  • [5] Pasiut, K., Partyka, J. 2017. The influence of ZrO₂ addition on the thermal properties of glass–ceramic materials from SiO₂–Al₂O₃–Na₂O–K₂O–CaO system. Journal of Thermal Analysis and Calorimetry, 130(1), 343-350.
  • [6] Xing, Z., Pang, Y., Li, Q. B. E., Zhang, J. Y., Xu, D. 2024. Modification of zirconia with hydroxyapatite for bioactive enhancement as dental implants. Research Square Preprint.
  • [7] Xing, Z., Pang, Y., Li, E., Zhang, J. Y., Xu, D. 2024. Preparation and characterisation of zirconia/hydroxyapatite bioactive composites as potential dental implants. Journal of Materials Science: Materials in Engineering, 19(1), 43.
  • [8] Sivasankar, M. V., Chinta, M. L., Rao, P. S. 2024. Zirconia based composite scaffolds and their application in bone tissue engineering. International Journal of Biological Macromolecules, 130, 558.
  • [9] Wang, B., et al. 2024. 3D printed zirconia ceramic tool for bone repair with multifunction of drug release, drilling and implantation. Ceramics International, 50(18), 33143-33152.
  • [10] Han, M.-K. 2024. Advances and challenges in zirconia-based materials for dental applications. Journal of the Korean Ceramic Society, 61(5), 783-799.
  • [11] Kılıçoğlu, O., Mehmetcik, H. 2021. Science mapping for radiation shielding research. Radiation Physics and Chemistry, 189, 109721.
  • [12] Mishra, R. K., et al. 2024. Fabrication of bioactive transparent glass ceramics 55SiO₂–25Na₂O–(15-x)CaO–5P₂O₅–xZrO₂ (0 ≤ x ≤ 6): physical, structural and in-vitro cell viability insights for biomedical applications. Ceramics International, 50(9), 14550-14570.
  • [13] Özdoğan, H., Kacal, M. R., Kılıçoğlu, O., Polat, H., Öğül, H., Akman, F. 2025. Experimental, simulation, and theoretical investigations of gamma and neutron shielding characteristics for composites reinforced with boron carbide and titanium oxide. Radiation Physics and Chemistry, 226, 112167.
  • [14] Sayyed, M. I., Almuqrin, A. H., Kurtuluş, R., Javier-Hila, A. M. V., Kaky, K., Kavas, T. 2021. X-ray shielding characteristics of P₂O₅–Nb₂O₅ glass doped with Bi₂O₃ by using EPICS2017 and Phy-X/PSD. Applied Physics A, 127(4), 243.
  • [15] Kılıçoğlu, O. 2019. Characterization of copper oxide and cobalt oxide substituted bioactive glasses for gamma and neutron shielding applications. Ceramics International, 45(17), 23619-23631.
  • [16] Kılıçoğlu, O., Tekin, H. O. 2020. Bioactive glasses with TiO₂ additive: behaviour characterization against nuclear radiation and determination of buildup factors. Ceramics International, 46(8), 10779-10787.
  • [17] Kılıçoğlu, O., Tekin, H. O. 2020. Bioactive glasses and direct effect of increased K₂O additive for nuclear shielding performance: a comparative investigation. Ceramics International, 46(2), 1323-1333.
  • [18] Kılıçoğlu, O., et al. 2022. Micro Pb filled polymer composites: theoretical, experimental and simulation results for γ-ray shielding performance. Radiation Physics and Chemistry, 194, 110039.
There are 18 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Research Article
Authors

Özge Kılıçoğlu 0000-0002-8443-9816

Submission Date May 3, 2025
Acceptance Date June 27, 2025
Publication Date August 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Kılıçoğlu, Ö. (2025). Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 366-374. https://doi.org/10.19113/sdufenbed.1691010
AMA Kılıçoğlu Ö. Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility. J. Nat. Appl. Sci. August 2025;29(2):366-374. doi:10.19113/sdufenbed.1691010
Chicago Kılıçoğlu, Özge. “Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 2 (August 2025): 366-74. https://doi.org/10.19113/sdufenbed.1691010.
EndNote Kılıçoğlu Ö (August 1, 2025) Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 366–374.
IEEE Ö. Kılıçoğlu, “Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility”, J. Nat. Appl. Sci., vol. 29, no. 2, pp. 366–374, 2025, doi: 10.19113/sdufenbed.1691010.
ISNAD Kılıçoğlu, Özge. “Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (August2025), 366-374. https://doi.org/10.19113/sdufenbed.1691010.
JAMA Kılıçoğlu Ö. Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility. J. Nat. Appl. Sci. 2025;29:366–374.
MLA Kılıçoğlu, Özge. “Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 2, 2025, pp. 366-74, doi:10.19113/sdufenbed.1691010.
Vancouver Kılıçoğlu Ö. Innovative Bioactive Zirconia Glass Ceramics: Combining Radiation Protection and Biocompatibility. J. Nat. Appl. Sci. 2025;29(2):366-74.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.