Research Article
BibTex RIS Cite

Sonlu Gruplarda Komütatiflik, Sürjektiflik ve Homomorfizma Dereceleri Arasındaki Nicel İlişkiler

Year 2025, Volume: 29 Issue: 3, 705 - 715, 25.12.2025
https://doi.org/10.19113/sdufenbed.1818549

Abstract

Bu makale, sonlu gruplarda yapısal analiz amacıyla iki yeni olasılıksal ölçüyü, sür-jektiflik derecesi ve homomorfizm derecesini tanıtmaktadır. Bu ölçütler ile daha önce tanıtılan komütatiflik derecesi arasında ilişki kuran analitik bir çerçeve geliştirilmiştir. Sürjektiflik derecesine bağlı olarak, komütatiflik derecesi için yeni alt ve üst sınırlar elde edilmiş ve gruplar arasındaki fonksiyonların homomorfizma özellikleri nicel olarak incelenmiştir. Kavramlar arasındaki ilişkiler teoremler ve örneklerle desteklenmiş olup, bazı örnekler için SageMath kodu verilmiştir. Bu bulgular yapısal homomorfizmlerin daha derinlemesine olasılıksal olarak anlaşıl-masına katkıda bulunmakta ve sonlu gruplar içindeki cebirsel ilişkilerin niceliksel olarak belirlenmesi için yeni analitik araçlar sağlamaktadır.

Ethical Statement

Yazar, bu çalışmada herhangi bir etik ihlal bulunmadığını beyan etmektedir.

Supporting Institution

Bu araştırma herhangi bir kurum veya kuruluş tarafından maddi olarak desteklenmemiştir.

References

  • [1] Gallagher, P. X. 1970. The number of conjugacy classes in a finite group. Mathematische Zeitschrift, 118(3), 175–179.
  • [2] Gustafson, W. H. 1973. What is the probability that two group elements commute? The Ameri-can Mathematical Monthly, 80(9), 1031–1034.
  • [3] Rusin, D. 1979. What is the probability that two elements of a finite group commute? Pacific Journal of Mathematics, 82(1), 237–247.
  • [4] Gürdal, M. 2009. Description of extended eigen-values and extended eigenvectors of integration operators on the Wiener algebra. Expositiones Mathematicae, 27(2), 153–160.
  • [5] Karaev, M., Gürdal, M., Huban, M. B. 2016. Re-producing kernels, Engliš algebras and some applications. Studia Mathematica, 232(2), 113–141.
  • [6] Karaev, M., Gürdal, M., Saltan, S. 2011. Some applications of Banach algebra techniques. Mathematische Nachrichten, 284(13), 1678–1689.
  • [7] Gürdal, M., Garayev, M. T., Saltan, S. 2015. Some concrete operators and their properties. Turk-ish Journal of Mathematics, 39(6), 970–989.
  • [8] Gürdal, M. 2009. On the extended eigenvalues and extended eigenvectors of shift operator on the Wiener algebra. Applied Mathematics Let-ters, 22(11), 1727–1729.
  • [9] Lescot, P. 1995. Isoclinism classes and commu-tativity degrees of finite groups. Journal of Al-gebra, 177(3), 847–869.
  • [10] Lescot, P. 2001. Central extensions and commu-tativity degree. Communications in Algebra, 29(10), 4451–4460.
  • [11] Moghaddam, M. R. R., Salemkar, A. R., Chiti, K. 2005. n-Isoclinism classes and n-nilpotency degree of finite groups. Algebra Colloquium, 12(2), 255–261.
  • [12] Erfanian, A., Rezaei, R., Lescot, P. 2007. On the relative commutativity degree of a subgroup of a finite group. Communications in Algebra, 35(12), 4183–4197.
  • [13] Tărnăuceanu, M. 2009. Subgroup commutativi-ty degrees of finite groups. Journal of Algebra, 321(9), 2508–2520.
  • [14] Barzegar, R., Erfanian, A., Farrokhi, M. D. G. 2013. Finite groups with three relative commu-tativity degrees. Bulletin of the Iranian Mathe-matical Society, 39(2), 271–280.
  • [15] Rezaei, R., Erfanian, A. 2014. A note on the relative commutativity degree of finite groups. Asian-European Journal of Mathematics, 7(1), 1450017.
  • [16] Pournaki, M. R., Sobhani, R. 2008. Probability that the commutator of two group elements is equal to a given element. Journal of Pure and Applied Algebra, 212(4), 727–734.
  • [17] Nath, R. K., Das, A. K. 2010. On a lower bound of commutativity degree. Rendiconti del Circolo Matematico di Palermo, 59(1), 137–142.
  • [18] Pirzadeh, M., Hashemi, M. 2022. A generaliza-tion of the n^th-commutativity degree in finite groups. Computational Sciences and Engineer-ing, 2(1), 33–40.
  • [19] Ghaneei, M., Azadi, M. 2021. The nth commuta-tivity degree of semigroups. Journal of Linear and Topological Algebra, 10(3), 225–233.
  • [20] Nath, R. K., Das, A. K. 2011. On generalized commutativity degree of a finite group. The Rocky Mountain Journal of Mathematics, 41(6), 1987–2000.
  • [21] Chashiani, A., Rezaei, R. 2021. On the commuta-tivity degree of a group algebra. Afrika Ma-tematika, 32(5), 1137–1145.
  • [22] Arvasi, Z., Çağlayan, E. I., Odabaş, A. 2022. Commutativity degree of crossed modules. Turkish Journal of Mathematics, 46(1), 242–256.
  • [23] Çetin, S., Gürdal, U. 2024. Crossed modules with action. Ukrainian Mathematical Journal, 76(4), 649–668.

Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups

Year 2025, Volume: 29 Issue: 3, 705 - 715, 25.12.2025
https://doi.org/10.19113/sdufenbed.1818549

Abstract

This article introduces two new probabilistic measures, the surjectivity degree and the homomorphism degree, for the purpose of structural analysis in finite groups. An analytical framework is developed that establishes a relationship be-tween these measures and the previously introduced commutativity degree. New lower and upper bounds for the commutativity degree, depending on the surjectiv-ity degree, are obtained; the homomorphism properties of functions between groups are quantitatively investigated. The relationships between the concepts are supported by theorems and examples, and SageMath code is provided for some examples. These findings contribute to a deeper probabilistic understanding of structural homomorphisms and provide new analytical tools for quantifying algebraic relationships within finite groups.

Ethical Statement

The author declares that there is no ethical issue in this study.

Supporting Institution

This research received no specific grant from any funding agency.

References

  • [1] Gallagher, P. X. 1970. The number of conjugacy classes in a finite group. Mathematische Zeitschrift, 118(3), 175–179.
  • [2] Gustafson, W. H. 1973. What is the probability that two group elements commute? The Ameri-can Mathematical Monthly, 80(9), 1031–1034.
  • [3] Rusin, D. 1979. What is the probability that two elements of a finite group commute? Pacific Journal of Mathematics, 82(1), 237–247.
  • [4] Gürdal, M. 2009. Description of extended eigen-values and extended eigenvectors of integration operators on the Wiener algebra. Expositiones Mathematicae, 27(2), 153–160.
  • [5] Karaev, M., Gürdal, M., Huban, M. B. 2016. Re-producing kernels, Engliš algebras and some applications. Studia Mathematica, 232(2), 113–141.
  • [6] Karaev, M., Gürdal, M., Saltan, S. 2011. Some applications of Banach algebra techniques. Mathematische Nachrichten, 284(13), 1678–1689.
  • [7] Gürdal, M., Garayev, M. T., Saltan, S. 2015. Some concrete operators and their properties. Turk-ish Journal of Mathematics, 39(6), 970–989.
  • [8] Gürdal, M. 2009. On the extended eigenvalues and extended eigenvectors of shift operator on the Wiener algebra. Applied Mathematics Let-ters, 22(11), 1727–1729.
  • [9] Lescot, P. 1995. Isoclinism classes and commu-tativity degrees of finite groups. Journal of Al-gebra, 177(3), 847–869.
  • [10] Lescot, P. 2001. Central extensions and commu-tativity degree. Communications in Algebra, 29(10), 4451–4460.
  • [11] Moghaddam, M. R. R., Salemkar, A. R., Chiti, K. 2005. n-Isoclinism classes and n-nilpotency degree of finite groups. Algebra Colloquium, 12(2), 255–261.
  • [12] Erfanian, A., Rezaei, R., Lescot, P. 2007. On the relative commutativity degree of a subgroup of a finite group. Communications in Algebra, 35(12), 4183–4197.
  • [13] Tărnăuceanu, M. 2009. Subgroup commutativi-ty degrees of finite groups. Journal of Algebra, 321(9), 2508–2520.
  • [14] Barzegar, R., Erfanian, A., Farrokhi, M. D. G. 2013. Finite groups with three relative commu-tativity degrees. Bulletin of the Iranian Mathe-matical Society, 39(2), 271–280.
  • [15] Rezaei, R., Erfanian, A. 2014. A note on the relative commutativity degree of finite groups. Asian-European Journal of Mathematics, 7(1), 1450017.
  • [16] Pournaki, M. R., Sobhani, R. 2008. Probability that the commutator of two group elements is equal to a given element. Journal of Pure and Applied Algebra, 212(4), 727–734.
  • [17] Nath, R. K., Das, A. K. 2010. On a lower bound of commutativity degree. Rendiconti del Circolo Matematico di Palermo, 59(1), 137–142.
  • [18] Pirzadeh, M., Hashemi, M. 2022. A generaliza-tion of the n^th-commutativity degree in finite groups. Computational Sciences and Engineer-ing, 2(1), 33–40.
  • [19] Ghaneei, M., Azadi, M. 2021. The nth commuta-tivity degree of semigroups. Journal of Linear and Topological Algebra, 10(3), 225–233.
  • [20] Nath, R. K., Das, A. K. 2011. On generalized commutativity degree of a finite group. The Rocky Mountain Journal of Mathematics, 41(6), 1987–2000.
  • [21] Chashiani, A., Rezaei, R. 2021. On the commuta-tivity degree of a group algebra. Afrika Ma-tematika, 32(5), 1137–1145.
  • [22] Arvasi, Z., Çağlayan, E. I., Odabaş, A. 2022. Commutativity degree of crossed modules. Turkish Journal of Mathematics, 46(1), 242–256.
  • [23] Çetin, S., Gürdal, U. 2024. Crossed modules with action. Ukrainian Mathematical Journal, 76(4), 649–668.
There are 23 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory, Group Theory and Generalisations
Journal Section Research Article
Authors

Mehmet Uc 0000-0003-3680-9103

Submission Date November 6, 2025
Acceptance Date November 26, 2025
Publication Date December 25, 2025
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Uc, M. (2025). Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 705-715. https://doi.org/10.19113/sdufenbed.1818549
AMA Uc M. Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups. J. Nat. Appl. Sci. December 2025;29(3):705-715. doi:10.19113/sdufenbed.1818549
Chicago Uc, Mehmet. “Quantitative Relations Between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 3 (December 2025): 705-15. https://doi.org/10.19113/sdufenbed.1818549.
EndNote Uc M (December 1, 2025) Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 3 705–715.
IEEE M. Uc, “Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups”, J. Nat. Appl. Sci., vol. 29, no. 3, pp. 705–715, 2025, doi: 10.19113/sdufenbed.1818549.
ISNAD Uc, Mehmet. “Quantitative Relations Between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/3 (December2025), 705-715. https://doi.org/10.19113/sdufenbed.1818549.
JAMA Uc M. Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups. J. Nat. Appl. Sci. 2025;29:705–715.
MLA Uc, Mehmet. “Quantitative Relations Between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 3, 2025, pp. 705-1, doi:10.19113/sdufenbed.1818549.
Vancouver Uc M. Quantitative Relations between Commutativity, Surjectivity, and Homomorphism Degrees in Finite Groups. J. Nat. Appl. Sci. 2025;29(3):705-1.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.