BibTex RIS Cite

The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study

Year 2016, , 475 - 489, 24.11.2016
https://doi.org/10.19113/sdufbed.07390

Abstract

In this study; a series of novel oxime ethers, 3-(4-chlorophenyl)-1-phenyl-2-propen-1-one O-benzyl oximes, have been synthesized and characterized by several spectroscopic methods. To the best of our knowledge, this is the first synthesis of 3-(4-chlorophenyl)-1-phenyl-2-propen-1-one O-benzyl oximes. The study consists of two parts. In the first part, the synthesis and the characterization of the selected compounds have been carried out. In the second part of our study some DFT (Density Functional Theory) calculations have been performed on the synthesized molecules and the obtained results have been compared with the experimental results. In the study; single point energy calculations, geometry optimizations, frequency analysis, NMR spectral analysis,  molecular electrostatic potential map calculations, frontier molecular orbital calculations, determination of some global reactivity descriptors and Mulliken atomic charge calculations have been performed. All DFT calculations were carried out at the B3LYP/6-31G(d), B3LYP/6-311G(d,p) and B3LYP/6-311+G(2d,p) level of theories.

References

  • [1] Siddiqui, Z. N., Asad, M., Praveen, S. 2008. Synthesis and biological activity of heterocycles from chalcone. Medicinal Chemistry Research, 17, 318-325.
  • [2] Krishnakumar, B., Velmurugan, R., Swaminathan, M. 2011. TiO2-SO42- as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation. Catalysis Communications, 12, 375-379.
  • [3] Dimmock, J. R., Elias, D. W., Beazely, M. A., Kandepu, N. M. 1999. Bioactivities of chalcones. Current Medicinal Chemistry, 6, 1125-1149.
  • [4] Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y., Lee, K. H. 2000. Antitumor agents. Part 202: novel 2’-amino chalcones: design, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters, 10, 699-701.
  • [5] Liu, M., Wilairat, P., Go, M. L. 2001. Antimalarial alkoxylated and hydroxylated chalcones: structure:activity relationship analysis. Journal of Medicinal Chemistry, 44, 4443-4452.
  • [6] Dominguez, J. N., Charris, J. E., Lobo, G., de Dominguez, N. G., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J., Rosenthal, P. J. 2001. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. European Journal of Medicinal Chemistry, 36, 555-560.
  • [7] Ram, V. J., Saxena, A. S., Srivastava, S., Chandra, S. 2000. Oxygenated chalcones and bischalcones as potential antimalarial agents. Bioorganic & Medicinal Chemistry Letters, 10, 2159-2161.
  • [8] Herencia, F., Ferrandiz, M. L., Ubeda, A., Dominguez, J. N., Charris, J. E., Lobo, G. M., Alcaraz, M. J. 1998. Synthesis and anti-imflammatory activity of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 8, 1169-1174.
  • [9] Lin, Y. M., Zhou, Y. S., Flavin, M. T., Zhou, L. M., Nie, W. G., Chen, F. C. 2002. Chalcones and flavonoids as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 10, 2795-2802.
  • [10] Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K., Pratap, R. 2004. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12, 883-889.
  • [11] Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T., Rennison, D. 1998. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorganic & Medicinal Chemistry Letters, 8, 1051-1056.
  • [12] Xu, X. Y., Li, J. T., Du, C., Song, Y. L. 2011. Improved Synthesis of 1,3-Diaryl-2-propen-1-one Oxime in the Presence of Anhydrous Sodium Sulfate. Chinese Journal of Chemistry, 29, 2781-2784.
  • [13] Luo, Y., Song, R., Li, Y., Zhang, S., Liu, Z.-J., Fu, J., Zhu, H.-L. 2012. Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorganic & Medicinal Chemistry Letters, 22, 3039-3043.
  • [14] Wang, Y.-T., Qin, Y.-J., Zhang, Y.-L., Li, Y.-J., Rao, B., Zhang, Y.-Q., Yang, M.-R., Jiang, A.-Q., Qi, J.-L., Zhu, H.-L. 2014. Synthesis, biological evaluation, and molecular docking studies of novel chalcone oxime derivatives as potential tubulin polymerization inhibitors. Rsc Advances, 4, 32263-32275.
  • [15] Chang, M.-Y., Chen, Y.-C., Chan, C.-K. 2014. One-pot synthesis of multifunctionalized cyclopropanes. Tetrahedron, 70, 2257-2263.
  • [16] Sinisterra, J. V., Garciaraso, A., Cabello, J. A, Marinas, J. M. 1984. An improved procedure for the Claisen-Schmidt reaction. Synthesis-Stuttgart, 502-504.
  • [17] Sebti, S., Solhy, A., Tahir, R., Boulaajaj, S., Mayoral, J. A., Fraile, J. M., Kossir, A., Oumimoun, H. 2001. Calcined sodium nitrate/natural phosphate: an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media. Tetrahedron Letters, 42, 7953-7955.
  • [18] Zhu, X., Wang, Y.-F., Ren, W., Zhang, F.-L., Chiba, S. 2013. TEMPO-Mediated Aliphatic C-H oxidation with oximes and hydrazones. Organic Letters, 15, 3214-3217.
  • [19] Liu, S., Liebeskind, L. S. 2008. A simple, modular synthesis of substituted pyridines. Journal of the American Chemical Society, 130, 6918-6919.
  • [20] Sinisterra, J. V., Marinas, J. M. 1987. Barium hydroxide as the catalyst in organic reactions. Part X. Reaction of chalcone with hydroxylamine. Bulletin Des Societes Chimiques Belges, 96, 293-302.
  • [21] Hyster, T. K., Rovis, T. 2011. Pyridine synthesis from oximes and alkynes via rhodium (iii) catalysis: Cp* and Cp t provide complementary selectivity. Chemical Communications, 47, 11846-11848.
  • [22] Frisch M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. 2013. Gaussian, Inc., Wallingford CT.
  • [23] GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. 2009. Semichem Inc., Shawnee Mission, KS.
  • [24] Koopmans, T. 1933. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104.
  • [25] Mulliken, R. S. 1934. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem.Phys., 2, 782.
  • [26] Pearson, R. G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc., 85, 3533.
  • [27] Pearson, R. G. 1968. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ., 45, 581.
  • [28] Pearson, R. G. 1999. Maximum chemical and physical hardness. J. Chem. Educ., 76, 267.
  • [29] Parr, R. G.; Pearson R. G. 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 105, 7512.
  • [30] Parr, R. G.; Szentpaly, L.; Liu, S. 1999. Electrophilicity index. J. Am. Chem. Soc., 121, 1922.
  • [31] Chattaraj, P. K.; Sarkar, U.; Roy, D. R. 2006. Electrophilicity index. Chem. Rev., 106, 2065.
Year 2016, , 475 - 489, 24.11.2016
https://doi.org/10.19113/sdufbed.07390

Abstract

References

  • [1] Siddiqui, Z. N., Asad, M., Praveen, S. 2008. Synthesis and biological activity of heterocycles from chalcone. Medicinal Chemistry Research, 17, 318-325.
  • [2] Krishnakumar, B., Velmurugan, R., Swaminathan, M. 2011. TiO2-SO42- as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation. Catalysis Communications, 12, 375-379.
  • [3] Dimmock, J. R., Elias, D. W., Beazely, M. A., Kandepu, N. M. 1999. Bioactivities of chalcones. Current Medicinal Chemistry, 6, 1125-1149.
  • [4] Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, Y., Lee, K. H. 2000. Antitumor agents. Part 202: novel 2’-amino chalcones: design, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry Letters, 10, 699-701.
  • [5] Liu, M., Wilairat, P., Go, M. L. 2001. Antimalarial alkoxylated and hydroxylated chalcones: structure:activity relationship analysis. Journal of Medicinal Chemistry, 44, 4443-4452.
  • [6] Dominguez, J. N., Charris, J. E., Lobo, G., de Dominguez, N. G., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J., Rosenthal, P. J. 2001. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. European Journal of Medicinal Chemistry, 36, 555-560.
  • [7] Ram, V. J., Saxena, A. S., Srivastava, S., Chandra, S. 2000. Oxygenated chalcones and bischalcones as potential antimalarial agents. Bioorganic & Medicinal Chemistry Letters, 10, 2159-2161.
  • [8] Herencia, F., Ferrandiz, M. L., Ubeda, A., Dominguez, J. N., Charris, J. E., Lobo, G. M., Alcaraz, M. J. 1998. Synthesis and anti-imflammatory activity of chalcone derivatives. Bioorganic & Medicinal Chemistry Letters, 8, 1169-1174.
  • [9] Lin, Y. M., Zhou, Y. S., Flavin, M. T., Zhou, L. M., Nie, W. G., Chen, F. C. 2002. Chalcones and flavonoids as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 10, 2795-2802.
  • [10] Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K., Pratap, R. 2004. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorganic & Medicinal Chemistry, 12, 883-889.
  • [11] Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T., Rennison, D. 1998. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorganic & Medicinal Chemistry Letters, 8, 1051-1056.
  • [12] Xu, X. Y., Li, J. T., Du, C., Song, Y. L. 2011. Improved Synthesis of 1,3-Diaryl-2-propen-1-one Oxime in the Presence of Anhydrous Sodium Sulfate. Chinese Journal of Chemistry, 29, 2781-2784.
  • [13] Luo, Y., Song, R., Li, Y., Zhang, S., Liu, Z.-J., Fu, J., Zhu, H.-L. 2012. Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorganic & Medicinal Chemistry Letters, 22, 3039-3043.
  • [14] Wang, Y.-T., Qin, Y.-J., Zhang, Y.-L., Li, Y.-J., Rao, B., Zhang, Y.-Q., Yang, M.-R., Jiang, A.-Q., Qi, J.-L., Zhu, H.-L. 2014. Synthesis, biological evaluation, and molecular docking studies of novel chalcone oxime derivatives as potential tubulin polymerization inhibitors. Rsc Advances, 4, 32263-32275.
  • [15] Chang, M.-Y., Chen, Y.-C., Chan, C.-K. 2014. One-pot synthesis of multifunctionalized cyclopropanes. Tetrahedron, 70, 2257-2263.
  • [16] Sinisterra, J. V., Garciaraso, A., Cabello, J. A, Marinas, J. M. 1984. An improved procedure for the Claisen-Schmidt reaction. Synthesis-Stuttgart, 502-504.
  • [17] Sebti, S., Solhy, A., Tahir, R., Boulaajaj, S., Mayoral, J. A., Fraile, J. M., Kossir, A., Oumimoun, H. 2001. Calcined sodium nitrate/natural phosphate: an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media. Tetrahedron Letters, 42, 7953-7955.
  • [18] Zhu, X., Wang, Y.-F., Ren, W., Zhang, F.-L., Chiba, S. 2013. TEMPO-Mediated Aliphatic C-H oxidation with oximes and hydrazones. Organic Letters, 15, 3214-3217.
  • [19] Liu, S., Liebeskind, L. S. 2008. A simple, modular synthesis of substituted pyridines. Journal of the American Chemical Society, 130, 6918-6919.
  • [20] Sinisterra, J. V., Marinas, J. M. 1987. Barium hydroxide as the catalyst in organic reactions. Part X. Reaction of chalcone with hydroxylamine. Bulletin Des Societes Chimiques Belges, 96, 293-302.
  • [21] Hyster, T. K., Rovis, T. 2011. Pyridine synthesis from oximes and alkynes via rhodium (iii) catalysis: Cp* and Cp t provide complementary selectivity. Chemical Communications, 47, 11846-11848.
  • [22] Frisch M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. 2013. Gaussian, Inc., Wallingford CT.
  • [23] GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. 2009. Semichem Inc., Shawnee Mission, KS.
  • [24] Koopmans, T. 1933. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104.
  • [25] Mulliken, R. S. 1934. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem.Phys., 2, 782.
  • [26] Pearson, R. G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc., 85, 3533.
  • [27] Pearson, R. G. 1968. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ., 45, 581.
  • [28] Pearson, R. G. 1999. Maximum chemical and physical hardness. J. Chem. Educ., 76, 267.
  • [29] Parr, R. G.; Pearson R. G. 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 105, 7512.
  • [30] Parr, R. G.; Szentpaly, L.; Liu, S. 1999. Electrophilicity index. J. Am. Chem. Soc., 121, 1922.
  • [31] Chattaraj, P. K.; Sarkar, U.; Roy, D. R. 2006. Electrophilicity index. Chem. Rev., 106, 2065.
There are 31 citations in total.

Details

Journal Section Makaleler
Authors

Taner Erdoğan

Publication Date November 24, 2016
Published in Issue Year 2016

Cite

APA Erdoğan, T. (2016). The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 475-489. https://doi.org/10.19113/sdufbed.07390
AMA Erdoğan T. The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2016;20(3):475-489. doi:10.19113/sdufbed.07390
Chicago Erdoğan, Taner. “The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 3 (December 2016): 475-89. https://doi.org/10.19113/sdufbed.07390.
EndNote Erdoğan T (December 1, 2016) The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 3 475–489.
IEEE T. Erdoğan, “The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 20, no. 3, pp. 475–489, 2016, doi: 10.19113/sdufbed.07390.
ISNAD Erdoğan, Taner. “The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/3 (December 2016), 475-489. https://doi.org/10.19113/sdufbed.07390.
JAMA Erdoğan T. The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2016;20:475–489.
MLA Erdoğan, Taner. “The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 3, 2016, pp. 475-89, doi:10.19113/sdufbed.07390.
Vancouver Erdoğan T. The First Synthesis of Some Novel 4-Chloro Chalcone Based Oxime Ethers: An Experimental and Computational Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2016;20(3):475-89.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.