Research Article
BibTex RIS Cite

Çevre Dostu Çözücüler Kullanarak Levulinik Asidin Reaktif Ekstraksiyonunun Deneysel Tasarımı

Year 2019, , 878 - 884, 25.12.2019
https://doi.org/10.19113/sdufenbed.524747

Abstract

Levulinik
asit, endüstrinin birçok farklı alanında kullanılan bir karboksilik asittir.
Tarım alanında pestisit ve gübre amaçlı olarak kullanılmaktadır ve ayrıca
kendine özgü karamel kokusu nedeniyle kozmetik sektöründe ve aromatik
özellikleri nedeniyle gıda sanayisinde kullanılır. Karboksilli asitler
genellikle endüstride fermantasyon işlemleriyle üretilir ve nihai ürün
konsantrasyonu sulu çözeltide yaklaşık % 10'dur. Asitin sulu çözeltiden
ayrılması için birçok farklı yöntem vardır. Bunlardan biri reaktif
ekstraksiyondur. Bu çalışmada, Tri-n-oktil fosfin oksit ve çevre dostu
solventler (Dietil süksinat + 1-Bütil-3-metilimidazolyum hekzafulorofosfat)
kullanılarak reaktif ekstraksiyon yoluyla sulu çözeltiden levulinik asidin
uzaklaştırılması amaçlanmıştır. Deneysel tasarım uygulanmış ve optimum deney
sonuçları hesaplanmış ve veriler ANOVA ile analiz edilmiştir. Deneysel çalışma
sonucunda maksimum ekstraksiyon verimliliği % 55.1 olarak bulunmuştur.
Ekstraksiyon verimliliği için bağımsız değişkenler arasındaki model denklemi
belirlenmiştir. Bu verilere göre, elde edilen R2 değeri 0.9899
olarak hesaplanmıştır.

References

  • [1] Girisuta, B., Janssen, L. P. B. M., Heeres, H. J., 2006. Green chemicals a kinetic study on the conversion of glucose to levulinic acid. Chem. Eng. Res. Des., 84, 339–349.
  • [2] Datta, D., Marti, M. E., Pal, D., Kumar, S., 2017. Equilibrium study on the extraction of levulinic acid from aqueous solution with aliquat 336 dissolved in different diluents: solvent's polarity effect and column design. J. Chem. Eng. Data, 62(1), 3-10.
  • [3] Laitinen, A.T., Penttila, K. J. T., Kaunisto, J. M., 2016. Physical solvent extraction of levulinic acid from dilute aqueous solution with 2-methyltetrahydrofuran, Sep. Sci. Technol., 51(3), 465-473.
  • [4] Chang, C., Cen, P., Ma, X., 2007. Levulinic acid production from wheat straw, Bioresour. Technol. 98, 1448-1453.
  • [5] Baylan, N., Cehreli, S., Ozparlak, N., 2017. Transport and separation of carboxylic acids through bulk liquid membranes containing tributylamine, J. Dispersion Sci. Technol., 38(6), 895-900.
  • [6] Baylan, N., Cehreli, S., 2018. Ionic liquids as bulk liquid membranes on levulinic acid removal: A design study, J. Mol. Liq., 266, 299-308.
  • [7] Senol, A., 2000. Extraction equilibria of formic and levulinic acids using Alamine 308/diluent and conventional solvent systems, Sep. Purif. Technol., 21(1-2), 165-179.
  • [8] Uslu, H., Kirbaslar, S. I., 2008. Investigation of levulinic acid distribution from aqueous phase to organic phase with TOA extractant, Ind. Eng. Chem. Res., 47(14), 4598-4606.
  • [9] Lalikoglu, M., Gok, A., Gok, M. K., Asci, Y. S., 2015. Investigation of lactic acid separation by layered double hydroxide: equilibrium, kinetics, and thermodynamics, J. Chem. Eng. Data, 60(11), 3159-3165.
  • [10] Datta, D., Marti, M. E., Uslu, H., Kumar, S., 2016. Extraction of levulinic acid using tri-n-butyl phosphate and tri-n-octylamine in 1-octanol: Column design. Journal of the Taiwan Institute of Chemical Engineers, 66, 407-413.
  • [11] Bilgin, M., Arisoy, C., Kirbaslar, S. I., 2009. Extraction equilibria of propionic and butyric acids with tri-n-octylphosphine oxide/diluent systems, J. Chem. Eng. Data, 54(11), 3008-3013.
  • [12] Aşçı, Y., S., 2017. Examination of the efficiency of ionic liquids in glycolic acid separation from aqueous solution by using reactive extraction method, JOTCSA, 4(3), 981-992.
  • [13] Gok, A., Kirbaslar, S. I., Uslu, H., Gilani, H. G., 2011. Liquid-liquid equilibria of (water plus butyric acid plus diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems, Fluid Phase Equilib., 303(1), 71-75.
  • [14] Kirbaslar, S. I., Sahin, S., Bilgin, M., 2007. (Liquid + liquid) equilibria of (water + propionic acid + diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems, J. Chem. Thermodyn., 39(11), 1463-1469.
  • [15] Kirbaslar, S. I., Sahin, S., Bilgin, M., 2007. Liquid-liquid equilibria of (water +acetic acid + diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems. J. Chem. Eng. Data, 52(3), 1108-1112.
  • [16] Uslu, H., 2008. Reactive extraction of levulinic acid using TPA in toluene solution: LSER modeling, kinetic and equilibrium studies, Sep. Sci. Technol., 43(6), 1535-1548.
  • [17] Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Escaleira, L. A.,2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(5), 965-977.
  • [18] Uslu, H., Gok, A., Kirbaslar, S. I., 2009. Phase equilibria of (water + levulinic acid + dibasic esters) ternary systems", Fluid Phase Equilib., 282(1), 20-24.
  • [19] Uslu, H., Kirbaslar, S. I., 2008. Equilibrium studies of extraction of levulinic acid by (trioctylamine (TOA) + ester) solvents, J. Chem. Eng. Data, 53(7), 1557-1563.
  • [20] Uslu, H., Kirbaslar, S. I., 2009. Investigation of phase equilibria of levulinic acid distribution between aqueous phase to organic phase by Aliquat 336 in different modifiers", J. Chem. Thermodyn., 41(9), 1042-1048.
  • [21] Eda, S., Kota, B. J., Thella, P. K., Bankupalli, S., Bhargava, S. K., Parthasarathy, R., 2017. Regeneration of levulinic acid from loaded-organic phase: equilibrium, kinetic studies and process economics, Chem. Pap., 71, 1939–1951.

Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents

Year 2019, , 878 - 884, 25.12.2019
https://doi.org/10.19113/sdufenbed.524747

Abstract

Levulinic
acid is a carboxylic acid used in many different areas of the industry. It is
used as pesticide and fertilizer in agriculture industry, and it is also used
in the cosmetic industry due to its unique caramel odor and in the food
industry due to its aromatic properties. Carboxylic acids are generally
produced in the industry by fermentation processes, and the final product
concentration is approximately 10% in aqueous solution. There are many
different methods for the separation of acid from an aqueous solution. One of
them is reactive extraction. In this study, it was aimed to remove levulinic
acid from aqueous solution by reactive extraction using Tri-n-octylphosphine
oxide and environmentally friendly solvents (Diethyl
succinate+1-Butyl-3-methylimidazolium hexafluorophosphate). The experimental
design was performed, and optimum experimental results were calculated, and
data were analyzed with ANOVA. As a result of the experimental study, the
maximum extraction efficiency was found as 55.1%. The model equation between
the independent variables for the extraction efficiency was determined.
According to these data, the obtained R2 value was calculated as
0.9899.

References

  • [1] Girisuta, B., Janssen, L. P. B. M., Heeres, H. J., 2006. Green chemicals a kinetic study on the conversion of glucose to levulinic acid. Chem. Eng. Res. Des., 84, 339–349.
  • [2] Datta, D., Marti, M. E., Pal, D., Kumar, S., 2017. Equilibrium study on the extraction of levulinic acid from aqueous solution with aliquat 336 dissolved in different diluents: solvent's polarity effect and column design. J. Chem. Eng. Data, 62(1), 3-10.
  • [3] Laitinen, A.T., Penttila, K. J. T., Kaunisto, J. M., 2016. Physical solvent extraction of levulinic acid from dilute aqueous solution with 2-methyltetrahydrofuran, Sep. Sci. Technol., 51(3), 465-473.
  • [4] Chang, C., Cen, P., Ma, X., 2007. Levulinic acid production from wheat straw, Bioresour. Technol. 98, 1448-1453.
  • [5] Baylan, N., Cehreli, S., Ozparlak, N., 2017. Transport and separation of carboxylic acids through bulk liquid membranes containing tributylamine, J. Dispersion Sci. Technol., 38(6), 895-900.
  • [6] Baylan, N., Cehreli, S., 2018. Ionic liquids as bulk liquid membranes on levulinic acid removal: A design study, J. Mol. Liq., 266, 299-308.
  • [7] Senol, A., 2000. Extraction equilibria of formic and levulinic acids using Alamine 308/diluent and conventional solvent systems, Sep. Purif. Technol., 21(1-2), 165-179.
  • [8] Uslu, H., Kirbaslar, S. I., 2008. Investigation of levulinic acid distribution from aqueous phase to organic phase with TOA extractant, Ind. Eng. Chem. Res., 47(14), 4598-4606.
  • [9] Lalikoglu, M., Gok, A., Gok, M. K., Asci, Y. S., 2015. Investigation of lactic acid separation by layered double hydroxide: equilibrium, kinetics, and thermodynamics, J. Chem. Eng. Data, 60(11), 3159-3165.
  • [10] Datta, D., Marti, M. E., Uslu, H., Kumar, S., 2016. Extraction of levulinic acid using tri-n-butyl phosphate and tri-n-octylamine in 1-octanol: Column design. Journal of the Taiwan Institute of Chemical Engineers, 66, 407-413.
  • [11] Bilgin, M., Arisoy, C., Kirbaslar, S. I., 2009. Extraction equilibria of propionic and butyric acids with tri-n-octylphosphine oxide/diluent systems, J. Chem. Eng. Data, 54(11), 3008-3013.
  • [12] Aşçı, Y., S., 2017. Examination of the efficiency of ionic liquids in glycolic acid separation from aqueous solution by using reactive extraction method, JOTCSA, 4(3), 981-992.
  • [13] Gok, A., Kirbaslar, S. I., Uslu, H., Gilani, H. G., 2011. Liquid-liquid equilibria of (water plus butyric acid plus diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems, Fluid Phase Equilib., 303(1), 71-75.
  • [14] Kirbaslar, S. I., Sahin, S., Bilgin, M., 2007. (Liquid + liquid) equilibria of (water + propionic acid + diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems, J. Chem. Thermodyn., 39(11), 1463-1469.
  • [15] Kirbaslar, S. I., Sahin, S., Bilgin, M., 2007. Liquid-liquid equilibria of (water +acetic acid + diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems. J. Chem. Eng. Data, 52(3), 1108-1112.
  • [16] Uslu, H., 2008. Reactive extraction of levulinic acid using TPA in toluene solution: LSER modeling, kinetic and equilibrium studies, Sep. Sci. Technol., 43(6), 1535-1548.
  • [17] Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., Escaleira, L. A.,2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(5), 965-977.
  • [18] Uslu, H., Gok, A., Kirbaslar, S. I., 2009. Phase equilibria of (water + levulinic acid + dibasic esters) ternary systems", Fluid Phase Equilib., 282(1), 20-24.
  • [19] Uslu, H., Kirbaslar, S. I., 2008. Equilibrium studies of extraction of levulinic acid by (trioctylamine (TOA) + ester) solvents, J. Chem. Eng. Data, 53(7), 1557-1563.
  • [20] Uslu, H., Kirbaslar, S. I., 2009. Investigation of phase equilibria of levulinic acid distribution between aqueous phase to organic phase by Aliquat 336 in different modifiers", J. Chem. Thermodyn., 41(9), 1042-1048.
  • [21] Eda, S., Kota, B. J., Thella, P. K., Bankupalli, S., Bhargava, S. K., Parthasarathy, R., 2017. Regeneration of levulinic acid from loaded-organic phase: equilibrium, kinetic studies and process economics, Chem. Pap., 71, 1939–1951.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aslı Gök 0000-0001-5388-5445

Publication Date December 25, 2019
Published in Issue Year 2019

Cite

APA Gök, A. (2019). Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 878-884. https://doi.org/10.19113/sdufenbed.524747
AMA Gök A. Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2019;23(3):878-884. doi:10.19113/sdufenbed.524747
Chicago Gök, Aslı. “Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 878-84. https://doi.org/10.19113/sdufenbed.524747.
EndNote Gök A (December 1, 2019) Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 878–884.
IEEE A. Gök, “Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 23, no. 3, pp. 878–884, 2019, doi: 10.19113/sdufenbed.524747.
ISNAD Gök, Aslı. “Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 878-884. https://doi.org/10.19113/sdufenbed.524747.
JAMA Gök A. Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:878–884.
MLA Gök, Aslı. “Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 878-84, doi:10.19113/sdufenbed.524747.
Vancouver Gök A. Experimental Design of Reactive Extraction of Levulinic Acid Using Green Solvents. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(3):878-84.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.