Research Article
BibTex RIS Cite

Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design

Year 2019, , 904 - 916, 25.12.2019
https://doi.org/10.19113/sdufenbed.557021

Abstract

In this
study, TiO2 nanoparticles were prepared and -COOH functionalized
with 3-(3,4-dihydroxyphenyl) propionic acid. The characterization of
nanoparticles was performed by FTIR, TEM, EDS and XRD. HRP was immobilized on
those nanoparticles by EDC/NHS coupling reaction. The immobilization conditions
of HRP including A: enzyme concentration (0.5-1.5 mg/mL), B: immobilization pH
(4.0-8.0), C: immobilization temperature (4-50°C), D: immobilization time (1-20
h) were optimized by response surface methodology and Box-Behnken design. The
optimized immobilization conditions were identified as 0.5 mg/mL HRP, at pH
5.5, 40 °C for 8 h for activity of immobilized HRP, 1.5 mg/mL HRP, at pH 4 and
18°C for 20 h for protein binding yield (%). At these optimum conditions, the experimental
value for the activity of immobilized HRP was 80.39 U ± 1.06; protein binding
yield was 94.25 ± 3.58%. Moreover, the optimum temperature and pH of free and
immobilized enzyme were determined as 50°C and 4.0; 50°C and 3.5, respectively.
The activity of the immobilized HRP sustained 52% of its initial activity after
10 days storage at 4°C
. Furthermore,
the immobilized HRP sustained 48% of its initial activity after 6 consecutive
reactions. 

References

  • [1] Shivakumar, A., Bg, J., Mr, D., 2017. Role of Peroxidase in Clinical Assays: A Short Review. Journal of Clinical Nutrition & Dietetics, 03.
  • [2] Lopes, G. R., Pinto, D. C. G. A., Silva, A. M. S., 2014. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Advances, 4. 37244-37265.
  • [3] Mohammed, L., Gomaa, H. G., Ragab, D., Zhu, J., 2017. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30. 1-14.
  • [4] Monier, M., Ayad, D. M., Wei, Y., Sarhan, A. A., 2010. Immobilization of horseradish peroxidase on modified chitosan beads. International Journal of Biological Macromolecules, 46. 324-330.
  • [5] Zhang, C., Cai, X., 2018. Immobilization of horseradish peroxidase on Fe3O4/nanotubes composites for Biocatalysis-degradation of phenol. Composite Interfaces, 26. 379-396.
  • [6] Mohamed, S. A., Al-Malki, A. L., Kumosani, T. A., El-Shishtawy, R. M., 2013. Horseradish peroxidase and chitosan: activation, immobilization and comparative results. International Journal of Biological Macromolecules, 60. 295-300.
  • [7] Datta, S., Christena, L. R., Rajaram, Y. R., 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3. 1-9.
  • [8] Aslani, E., Abri, A., Pazhang, M., 2018. Immobilization of trypsin onto Fe3O4@SiO2 -NH2 and study of its activity and stability. Colloids Surf B Biointerfaces, 170. 553-562.
  • [9] Libertino, S., Scandurra, A., Aiello, V., Giannazzo, F., Sinatra, F., Renis, M., Fichera, M., 2007. Layer uniformity in glucose oxidase immobilization on SiO2 surfaces. Applied Surface Science, 253. 9116-9123.
  • [10] Wu, H., Liang, Y., Shi, J., Wang, X., Yang, D., Jiang, Z., 2013. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres. Materials Science and Engineering C, 33. 1438-1445.
  • [11] Carp, O., 2004. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32. 33-177.
  • [12] Wang, L., 2004. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemistry Communications, 6. 225-229.
  • [13] Yi, X., Huang-Xian, J., Hong-Yuan, C., 2000. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Analytical Biochemistry, 278. 22-28.
  • [14] El-Nahass, M. N., El-Keiy, M. M., Ali, E. M. M., 2018. Immobilization of horseradish peroxidase into cubic mesoporous silicate, SBA-16 with high activity and enhanced stability. Int J Biol Macromol, 116. 1304-1309.
  • [15] Vasileva, N., Godjevargova, T., Ivanova, D., Gabrovska, K., 2009. Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane in removing of phenol from water. International Journal of Biological Macromolecules, 44. 190-194.
  • [16] Sekuljica, N. Z., Prlainovic, N. Z., Jovanovic, J. R., Stefanovic, A. B., Djokic, V. R., Mijin, D. Z., Knezevic-Jugovic, Z. D., 2016. Immobilization of horseradish peroxidase onto kaolin. Bioprocess and Biosystems Engineering, 39. 461-472.
  • [17] Jain, A., Ong, V., Jayaraman, S., Balasubramanian, R., Srinivasan, M. P., 2016. Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. The Journal of Supercritical Fluids, 107. 513-518.
  • [18] Mohamed, S. A., Darwish, A. A., El-Shishtawy, R. M., 2013. Immobilization of horseradish peroxidase on activated wool. Process Biochemistry, 48. 649-655.
  • [19] Mohamed, S. A., Al-Ghamdi, S. S., El-Shishtawy, R. M., 2016. Immobilization of horseradish peroxidase on amidoximated acrylic polymer activated by cyanuric chloride. International Journal of Biological Macromolecules, 91. 663-670.
  • [20] Yu, B., Cheng, H., Zhuang, W., Zhu, C., Wu, J., Niu, H., Liu, D., Chen, Y., Ying, H., 2019. Stability and repeatability improvement of horseradish peroxidase by immobilization on amino-functionalized bacterial cellulose. Process biochemistry, 79, 40-48.
  • [21] Xie, X., Luo, P., Han, J., Chen, T., Wang, Y., Cai, Y., Liu, Q., 2019. Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme Microb Technol, 122. 26-35.
  • [22] Jun, L. Y., Mubarak, N. M., Yon, L. S., Bing, C. H., Khalid, M., Jagadish, P., Abdullah, E. C., 2019. Immobilization of Peroxidase on Functionalized MWCNTs-Buckypaper/Polyvinyl alcohol Nanocomposite Membrane. Scientific Reports, 9. 2215.
  • [23] Wu, L., Wu, S., Xu, Z., Qiu, Y., Li, S., Xu, H., 2016. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosensors and Bioelectronic, 80. 59-66.
  • [24] Kumar, P. M., Badrinarayanan, S., Sastry, M., 2000. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358. 122-130.
  • [25] Psarra, E., König, U., Müller, M., Bittrich, E., Eichhorn, K.J., Welzel, P.B., Stamm, M., Uhlmann, P., 2017. In situ monitoring of linear RGD-peptide bioconjugation with nanoscale polymer brushes. ACS Omega, 2(3), 946-958.
  • [26] Pal, M., Serrano, J. G., Santiago, P., U., P., 2007. Size-Controlled Synthesis of Spherical TiO2 Nanoparticles: Morphology, Crystallization, and Phase Transition. The Journal of Physical Chemistry B, 111. 96-102.
  • [27] Hill, A., Karboune, S., Mateo, C., 2017. Investigating and optimizing the immobilization of levansucrase for increased transfructosylation activity and thermal stability. Process Biochemistry, 61. 63-72.
  • [28] Katz, E., MacVittie, K., 2013. Implanted biofuel cells operating in vivo – methods, applications and perspectives – feature article. Energy & Environmental Science, 6. 2791.
  • [29] Kamble, P. P., Kore, M. V., Patil, S. A., Jadhav, J. P., Attar, Y. C., 2018. Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1. Journal of Microbiological Methods, 149. 55-66.
  • [30] Dai, X. Y., Kong, L. M., Wang, X. L., Zhu, Q., Chen, K., Zhou, T., 2018. Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads. Food Chemistry, 253. 185-193.
  • [31] Pei, Z., Anderson, H., Myrskog, A., Duner, G., Ingemarsson, B., Aastrup, T., 2010. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. Analytical Biochemistry, 398. 161-168.
  • [32] Chouyyok, W., Panpranot, J., Thanachayanant, C., Prichanont, S., 2009. Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. Journal of Molecular Catalysis B: Enzymatic, 56. 246-252.
  • [33] Risse, F., Gedig, E. T., Gutmann, J. S., 2018. Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces. Analytical and Bioanalytical Chemistry, 410. 4109-4122.
  • [34] Homaei, A. A., Sariri, R., Vianello, F., Stevanato, R., 2013. Enzyme immobilization: an update. Journal of Chemical Biology, 6. 185-205.
  • [35] Kazenwadel, F., Wagner, H., Rapp, B. E., Franzreb, M., 2015. Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7. 10291-10298.
  • [36] Fernández-Lorente, G., Lopez-Gallego, F., Bolivar, J., Rocha-Martin, J., Moreno-Perez, S., Guisan, J., 2015. Immobilization of Proteins on Highly Activated Glyoxyl Supports: Dramatic Increase of the Enzyme Stability Multipoint Immobilization on Pre-existing Carriers. Current Organic Chemistry, 19. 1719-1731.
  • [37] Al-Dhrub, A. H. A., Sahin, S., Ozmen, I., Tunca, E., Bulbul, M., 2017. Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles. Process Biochemistry, 57. 95-104.
  • [38] Jamal, F., Qidwai, T., Singh, D., Pandey, P. K., 2012. Biocatalytic activity of immobilized pointed gourd (Trichosanthes dioica) peroxidase–concanavalin A complex on calcium alginate pectin gel. Journal of Molecular Catalysis B: Enzymatic, 74. 125-131.
  • [39] Sahin, S., Ozmen, I., 2016. Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. Journal of Molecular Catalysis B: Enzymatic, 133. S25-S33.
  • [40] Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X., 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology, 2(9), 577.
  • [41] Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., Liu, J., 2013. Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chemical Engineering Journal, 214. 304-309.

Horseradish Peroksidaz Enziminin TiO2-COOH Nanopartiküller Üzerine İmmobilizasyon Koşullarının Box-Behnken Metodu ile Optimize Edilmesi

Year 2019, , 904 - 916, 25.12.2019
https://doi.org/10.19113/sdufenbed.557021

Abstract

Bu
çalışmada, TiO2 nanopartiküller
hazırlandı ve 3-(3,4-dihidroksifenil) propiyonik asit ile –COOH
fonksiyonelleştirildi. FTIR, TEM, EDS ve XRD ile nanopartiküllerin
karakterizasyonu gerçekleştirildi. HRP elde edilen nanopartiküllerin üzerine
EDC/NHS bağlama yolu ile immobilize edildi. A: enzim konsantrasyonu (0.5-1.5
mg/mL), B: immobilizasyon pH’sı (4.0-8.0), C: immobilizasyon sıcaklığı
(4-50°C), D: immobilizasyon süresi (1-20 h)’ni içeren HRP’nin immobilizasyon
koşulları yanıt yüzey yöntemi ve Box-Behnken dizayn kullanılarak optimize
edildi. Optimize edilen immobilizasyon koşulları, immobilize HRP aktivitesi
için 0.5 mg/mL HRP, pH 5.5, 40 °C ve 8 saat, protein bağlama verimi (%) için
1.5 mg/mL HRP, pH 4, 18°C ve 20 saat olarak belirlendi. Bu immobilizasyon
koşullarında immobilize HRP için elde edilen deneysel değer 80.39 U ± 1.06
iken, protein bağlama verimi 94.25 ± 3.58%’dir. Bunun dışında serbest ve
immobilize enzimin optimum sıcaklık ve pH değeri sırasıyla 50°C ve 4.0; 50°C ve
3.5 olarak belirlendi. 4°C’de 10 gün saklama sonunda immobilize HRP’nin
başlangıç aktivitesinin %52’si kalmıştır. Ayrıca immobilize HRP 6 kez arka
arakaya kullanım sonucunda başlangıç aktivitesinin %48’ini sürdürmüştür. 

References

  • [1] Shivakumar, A., Bg, J., Mr, D., 2017. Role of Peroxidase in Clinical Assays: A Short Review. Journal of Clinical Nutrition & Dietetics, 03.
  • [2] Lopes, G. R., Pinto, D. C. G. A., Silva, A. M. S., 2014. Horseradish peroxidase (HRP) as a tool in green chemistry. RSC Advances, 4. 37244-37265.
  • [3] Mohammed, L., Gomaa, H. G., Ragab, D., Zhu, J., 2017. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30. 1-14.
  • [4] Monier, M., Ayad, D. M., Wei, Y., Sarhan, A. A., 2010. Immobilization of horseradish peroxidase on modified chitosan beads. International Journal of Biological Macromolecules, 46. 324-330.
  • [5] Zhang, C., Cai, X., 2018. Immobilization of horseradish peroxidase on Fe3O4/nanotubes composites for Biocatalysis-degradation of phenol. Composite Interfaces, 26. 379-396.
  • [6] Mohamed, S. A., Al-Malki, A. L., Kumosani, T. A., El-Shishtawy, R. M., 2013. Horseradish peroxidase and chitosan: activation, immobilization and comparative results. International Journal of Biological Macromolecules, 60. 295-300.
  • [7] Datta, S., Christena, L. R., Rajaram, Y. R., 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3. 1-9.
  • [8] Aslani, E., Abri, A., Pazhang, M., 2018. Immobilization of trypsin onto Fe3O4@SiO2 -NH2 and study of its activity and stability. Colloids Surf B Biointerfaces, 170. 553-562.
  • [9] Libertino, S., Scandurra, A., Aiello, V., Giannazzo, F., Sinatra, F., Renis, M., Fichera, M., 2007. Layer uniformity in glucose oxidase immobilization on SiO2 surfaces. Applied Surface Science, 253. 9116-9123.
  • [10] Wu, H., Liang, Y., Shi, J., Wang, X., Yang, D., Jiang, Z., 2013. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres. Materials Science and Engineering C, 33. 1438-1445.
  • [11] Carp, O., 2004. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32. 33-177.
  • [12] Wang, L., 2004. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemistry Communications, 6. 225-229.
  • [13] Yi, X., Huang-Xian, J., Hong-Yuan, C., 2000. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode. Analytical Biochemistry, 278. 22-28.
  • [14] El-Nahass, M. N., El-Keiy, M. M., Ali, E. M. M., 2018. Immobilization of horseradish peroxidase into cubic mesoporous silicate, SBA-16 with high activity and enhanced stability. Int J Biol Macromol, 116. 1304-1309.
  • [15] Vasileva, N., Godjevargova, T., Ivanova, D., Gabrovska, K., 2009. Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane in removing of phenol from water. International Journal of Biological Macromolecules, 44. 190-194.
  • [16] Sekuljica, N. Z., Prlainovic, N. Z., Jovanovic, J. R., Stefanovic, A. B., Djokic, V. R., Mijin, D. Z., Knezevic-Jugovic, Z. D., 2016. Immobilization of horseradish peroxidase onto kaolin. Bioprocess and Biosystems Engineering, 39. 461-472.
  • [17] Jain, A., Ong, V., Jayaraman, S., Balasubramanian, R., Srinivasan, M. P., 2016. Supercritical fluid immobilization of horseradish peroxidase on high surface area mesoporous activated carbon. The Journal of Supercritical Fluids, 107. 513-518.
  • [18] Mohamed, S. A., Darwish, A. A., El-Shishtawy, R. M., 2013. Immobilization of horseradish peroxidase on activated wool. Process Biochemistry, 48. 649-655.
  • [19] Mohamed, S. A., Al-Ghamdi, S. S., El-Shishtawy, R. M., 2016. Immobilization of horseradish peroxidase on amidoximated acrylic polymer activated by cyanuric chloride. International Journal of Biological Macromolecules, 91. 663-670.
  • [20] Yu, B., Cheng, H., Zhuang, W., Zhu, C., Wu, J., Niu, H., Liu, D., Chen, Y., Ying, H., 2019. Stability and repeatability improvement of horseradish peroxidase by immobilization on amino-functionalized bacterial cellulose. Process biochemistry, 79, 40-48.
  • [21] Xie, X., Luo, P., Han, J., Chen, T., Wang, Y., Cai, Y., Liu, Q., 2019. Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme Microb Technol, 122. 26-35.
  • [22] Jun, L. Y., Mubarak, N. M., Yon, L. S., Bing, C. H., Khalid, M., Jagadish, P., Abdullah, E. C., 2019. Immobilization of Peroxidase on Functionalized MWCNTs-Buckypaper/Polyvinyl alcohol Nanocomposite Membrane. Scientific Reports, 9. 2215.
  • [23] Wu, L., Wu, S., Xu, Z., Qiu, Y., Li, S., Xu, H., 2016. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosensors and Bioelectronic, 80. 59-66.
  • [24] Kumar, P. M., Badrinarayanan, S., Sastry, M., 2000. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358. 122-130.
  • [25] Psarra, E., König, U., Müller, M., Bittrich, E., Eichhorn, K.J., Welzel, P.B., Stamm, M., Uhlmann, P., 2017. In situ monitoring of linear RGD-peptide bioconjugation with nanoscale polymer brushes. ACS Omega, 2(3), 946-958.
  • [26] Pal, M., Serrano, J. G., Santiago, P., U., P., 2007. Size-Controlled Synthesis of Spherical TiO2 Nanoparticles: Morphology, Crystallization, and Phase Transition. The Journal of Physical Chemistry B, 111. 96-102.
  • [27] Hill, A., Karboune, S., Mateo, C., 2017. Investigating and optimizing the immobilization of levansucrase for increased transfructosylation activity and thermal stability. Process Biochemistry, 61. 63-72.
  • [28] Katz, E., MacVittie, K., 2013. Implanted biofuel cells operating in vivo – methods, applications and perspectives – feature article. Energy & Environmental Science, 6. 2791.
  • [29] Kamble, P. P., Kore, M. V., Patil, S. A., Jadhav, J. P., Attar, Y. C., 2018. Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1. Journal of Microbiological Methods, 149. 55-66.
  • [30] Dai, X. Y., Kong, L. M., Wang, X. L., Zhu, Q., Chen, K., Zhou, T., 2018. Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads. Food Chemistry, 253. 185-193.
  • [31] Pei, Z., Anderson, H., Myrskog, A., Duner, G., Ingemarsson, B., Aastrup, T., 2010. Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. Analytical Biochemistry, 398. 161-168.
  • [32] Chouyyok, W., Panpranot, J., Thanachayanant, C., Prichanont, S., 2009. Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. Journal of Molecular Catalysis B: Enzymatic, 56. 246-252.
  • [33] Risse, F., Gedig, E. T., Gutmann, J. S., 2018. Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces. Analytical and Bioanalytical Chemistry, 410. 4109-4122.
  • [34] Homaei, A. A., Sariri, R., Vianello, F., Stevanato, R., 2013. Enzyme immobilization: an update. Journal of Chemical Biology, 6. 185-205.
  • [35] Kazenwadel, F., Wagner, H., Rapp, B. E., Franzreb, M., 2015. Optimization of enzyme immobilization on magnetic microparticles using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinking agent. Analytical Methods, 7. 10291-10298.
  • [36] Fernández-Lorente, G., Lopez-Gallego, F., Bolivar, J., Rocha-Martin, J., Moreno-Perez, S., Guisan, J., 2015. Immobilization of Proteins on Highly Activated Glyoxyl Supports: Dramatic Increase of the Enzyme Stability Multipoint Immobilization on Pre-existing Carriers. Current Organic Chemistry, 19. 1719-1731.
  • [37] Al-Dhrub, A. H. A., Sahin, S., Ozmen, I., Tunca, E., Bulbul, M., 2017. Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles. Process Biochemistry, 57. 95-104.
  • [38] Jamal, F., Qidwai, T., Singh, D., Pandey, P. K., 2012. Biocatalytic activity of immobilized pointed gourd (Trichosanthes dioica) peroxidase–concanavalin A complex on calcium alginate pectin gel. Journal of Molecular Catalysis B: Enzymatic, 74. 125-131.
  • [39] Sahin, S., Ozmen, I., 2016. Determination of optimum conditions for glucose-6-phosphate dehydrogenase immobilization on chitosan-coated magnetic nanoparticles and its characterization. Journal of Molecular Catalysis B: Enzymatic, 133. S25-S33.
  • [40] Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., Yan, X., 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature nanotechnology, 2(9), 577.
  • [41] Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., Liu, J., 2013. Chitosan–halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal. Chemical Engineering Journal, 214. 304-309.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Selmihan Şahin 0000-0003-0486-3949

Publication Date December 25, 2019
Published in Issue Year 2019

Cite

APA Şahin, S. (2019). Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 904-916. https://doi.org/10.19113/sdufenbed.557021
AMA Şahin S. Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. December 2019;23(3):904-916. doi:10.19113/sdufenbed.557021
Chicago Şahin, Selmihan. “Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH Nanoparticles by Box-Behnken Design”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no. 3 (December 2019): 904-16. https://doi.org/10.19113/sdufenbed.557021.
EndNote Şahin S (December 1, 2019) Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 904–916.
IEEE S. Şahin, “Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., vol. 23, no. 3, pp. 904–916, 2019, doi: 10.19113/sdufenbed.557021.
ISNAD Şahin, Selmihan. “Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH Nanoparticles by Box-Behnken Design”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (December 2019), 904-916. https://doi.org/10.19113/sdufenbed.557021.
JAMA Şahin S. Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:904–916.
MLA Şahin, Selmihan. “Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH Nanoparticles by Box-Behnken Design”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 23, no. 3, 2019, pp. 904-16, doi:10.19113/sdufenbed.557021.
Vancouver Şahin S. Optimization of the Immobilization Conditions of Horseradish Peroxidase on TiO2-COOH nanoparticles by Box-Behnken Design. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(3):904-16.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.