Synthesis of Carbon Quantum Dots from Red Onions and Analysis of Photoluminescence Properties
Year 2020,
, 48 - 56, 20.04.2020
Abdullah Biçer
,
Kübra Bilmişoğlu Biçer
Abstract
In this study, carbon quantum dots were synthesized from a natural material which is red onion. Structure of carbon quantum dots was determined by XRD and FTIR spectra. Analysis of size and surface load was performed. The photophysical properties of characterized carbon quantum dots were investigated. Then, the effect of concentration, pH and temperature on the photophysical properties of the carbon quantum dots sample was investigated. Concentration studies indicated that the appropriate solution was a mixture of 250 μl / 4950 μl pure water. With the pH study performed at this concentration, it was observed that fluorescence feature decrease as pH value and temperature increases of the carbon quantum dots and it maintained its stability over a long period of time (3 months).
References
- [1] Gonçalves, H. M. R. 2013. Analytical Applications of Fluorescent Carbon Dots. Doktora Tezi, Faculdade De Ciencias Da Universidade Do Porto, Maıo.
- [2] Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., Scrivens, W. A. 2004. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc., 126 (40), 12736-12737.
- [3] Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., Luo, P. G., Yang, H., Kose, M. E., Chen, B., Veca, L. M., Xie, S. Y. 2006. Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc., 128 (24), 7756-7757.
- [4] Wang, Y., Hu, A. 2014. Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C 2 (34), 6921-6139.
- [5] Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., Asiri, A. M., Al-Youbi, A. O., Sun, X. 2012. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions, Anal. Chem., 84 (12), 5351-5357.
- [6] Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang, J. H., Chen, Q. D., Xu, H. L., Han, W., Yang, B. Sun, H. B., 2014. Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots, ACS Nano, 8 (3), 2541-2547.
- [7] Huang, H., Lv, J. J., Zhou, D. L., Bao, N., Xu, Y., Wang, A. J., Feng, J. J., 2013. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions, RSC Adv., 3 (44), 21691-21696.
- [8] Luo, P., Li, C., Shi, G. 2012. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering, Phys. Chem. Chem. Phys., 14 (20), 7360-7366.
- [9] Qu, S. N., Wang, X. Y., Lu, Q. P., Liu, X. Y., Wang, L. J. 2012. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots, Angew. Chem., Int. Ed., 51 (49), 12215-12218.
- [10] Wang, F., Chen, Y. H., Liu, C. Y., Ma, D. G. 2011. White Light- Emitting Devices Based on Carbon Dots' Electroluminescence, Chem. Commun., 47 (12), 3502-3504.
- [11] Gu, N., Li, Y., Wang, M., Cao, M. 2013. Nano-opto-electronics for biomedicine. ChinSci Bull., 58 (21), 2521-2529.
- [12] Feng, X., Jiang, Y., Zhao, J., Miao, M., Cao, S., Fang, J., Shi, L. 2015. Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging, RSC Adv., 5 (40), 31250-31254.
- [13] Wu, Z. L., Zhang, P., Gao, M. X., Liu, C. F., Wang, W., Leng, F., Huang, C. Z. 2013. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins, J. Mater. Chem. B 1 (22), 2868-2873.
- [14] Xu, H., Yang, X., Li, G., Zhao, C., Liao, X., 2015. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples, J. Agric. Food Chem., 63 (30), 6707-6714.
- [15] Liu, H., Ye, T., Mao, C. 2007. Fluorescent carbon nanoparticles derived from candle soot, Angew. Chem. Int. Ed., 46 (34), 6473-6475.
- [16] Sahu, S., Behera, B., Maiti, T. K., Mohapatra, S. 2012. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chem. Commun., 48 (70), 8835-8837.
- [17] Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., Sharon M. 2014. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity, J. Drug Deliv., 2014, Article ID 282193.
- [18] Feng, J., Wang, W. J., Hai, X., Yu, Y. L. Wang, J. H., 2016. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging, J. Mater. Chem. B 4 (3), 387-393.
- [19] Xue, M., Zhan, Z., Zou, M., Zhang, L., Zhao, S. 2016. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging, New J. Chem., 40 (2), 1698-1703.
- [20] Liang, Q., Ma, W., Shi, Y., Li, Z. Yang, X. 2013. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications, Carbon, 60, 421-428.
- [21] Yang, X., Zhou, Y., Zhu, S.H., Luo, Y., Feng, Y., Dou, Y. 2014. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging, Biosensors and Bioelectronics, 60, 292-298.
- [22] Zhou, H. S., Wang, L. 2014. Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application, Anal. Chem, dx.doi.org/10.1021/ac502646x.
- [23] Zhu, C., Zhai, J., Dong, S. 2012. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun., 48 (75) , 9367-9369.
- [24] Zheng, H., Wang, Q., Long, Y., Zhang, L., Gao, M., Bai, W. 2011. Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide, Carbon, 49, 3134-3140.
- [25] Yang, Z., Li, Z., Xu, M., Ma, Y., Zhang, J., Su, Y., Gao, F., Wei, H., Zhang, L. 2013. Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Lett. 5 (4), 247-259.
- [26] Prasannan, A., Imae, T. 2013. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels, Ind. Eng. Chem. Res. 2013, 52 (44), 15673-15678.
- [27] Lim, S. Y., Shen, W., Gao, Z. 2015. Carbon quantum dots and their applications, Chem. Soc. Rev., 44 (1), 362-381.
- [28] Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri A.M., Al-Youbi A.O., Sun, X. 2012. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater., 24 (15), 2037-2041.
- [29] Biçer, K. B. 2017. Karbon Kuantum Noktaların Sentezive Fotolüminesans Özelliklerinin İncelenmesi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 41 s, Erzurum.
- [30] Melis Özge Alaş, Rükan Genç, 2016, “Floresans Karbon Nanoparçacıkların Yeşil Sentezi ve Pasivasyon Ajanının Molekül Ağırlığının Nanoparçacık Özellikleri Üzerine Etkisinin İncelenmesi”, Sinop Üniversitesi Fen Bilimleri Dergisi (Sinop Uni J Nat Sci), 1 (2), 123-134.
- [31] Bozkurt, E. 2013. Kumarin 120 Boya Bileşiğinin Ters Misellerde Moleküler Davranışının Spektroskopik Tekniklerle İncelenmesi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 118 s, Erzurum.
- [32] Terzi, P. 2013. Elektro döndürme Yöntemiyle Elde Edilen Jelatin Nanoliflerin Gıdalarda Kıvam Verici Olarak Kullanılması, İstanbul Teknik Üniversitesi, Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 143 s, İstanbul.
- [33] Hsiao Wei, T., 2009. Rhelogy And Stability of Olive Oil Cream Emulsion Stabilized by Sucrose Fatty Acid Esters Nanionic Surfactans, Malaya Kuala Lumpur Üniversitesi, Yüksek Lisans Tezi, 62s, Malezya.
[34] Yu, S. J., Kang, M. W., Chang, H. C., Chen, K. M., Yu, Y. C., 2005. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity, J. Am. Chem. Soc., 127, 17604-17605.
- [35] Aslandaş, A. M., Balcı, N., Arık, M., Şakiroğlu, H., Onganer, Y., Meral, K. 2015. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection, Applied Surface Science, 356, 747-752.
Kırmızı Soğandan Karbon Kuantum Noktaların Sentezi ve Fotolüminesans Özelliklerinin İncelenmesi
Year 2020,
, 48 - 56, 20.04.2020
Abdullah Biçer
,
Kübra Bilmişoğlu Biçer
Abstract
Bu çalışmada doğal materyal olan kırmızı soğandan karbon kuantum noktaları sentezlendi. Karbon kuantum noktaların yapısı XRD ve FTIR spektrumları ile belirlendi. Boyut ve yüzey yükü analizleri yapıldı. Karakterizasyonu yapılan karbon kuantum noktaların fotofiziksel özellikleri araştırıldı. Daha sonra fotofiziksel özellikleri üzerine konsantrasyon, pH ve sıcaklığın etkisi incelendi. Konsantrasyon çalışmaları ile uygun çözeltinin 250 μl/4950 μl saf su karışımı olduğu belirlendi. Bu konsantrasyonda yapılan pH çalışması ile karbon kuantum noktanın pH değeri ve sıcaklık arttıkça floresans özelliğinin azaldığı ve uzun zaman aralığında (3 ay) kararlılığını koruduğu gözlendi.
References
- [1] Gonçalves, H. M. R. 2013. Analytical Applications of Fluorescent Carbon Dots. Doktora Tezi, Faculdade De Ciencias Da Universidade Do Porto, Maıo.
- [2] Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., Scrivens, W. A. 2004. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc., 126 (40), 12736-12737.
- [3] Sun, Y. P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., Wang, H., Luo, P. G., Yang, H., Kose, M. E., Chen, B., Veca, L. M., Xie, S. Y. 2006. Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc., 128 (24), 7756-7757.
- [4] Wang, Y., Hu, A. 2014. Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C 2 (34), 6921-6139.
- [5] Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., Asiri, A. M., Al-Youbi, A. O., Sun, X. 2012. Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions, Anal. Chem., 84 (12), 5351-5357.
- [6] Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang, J. H., Chen, Q. D., Xu, H. L., Han, W., Yang, B. Sun, H. B., 2014. Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots, ACS Nano, 8 (3), 2541-2547.
- [7] Huang, H., Lv, J. J., Zhou, D. L., Bao, N., Xu, Y., Wang, A. J., Feng, J. J., 2013. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions, RSC Adv., 3 (44), 21691-21696.
- [8] Luo, P., Li, C., Shi, G. 2012. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering, Phys. Chem. Chem. Phys., 14 (20), 7360-7366.
- [9] Qu, S. N., Wang, X. Y., Lu, Q. P., Liu, X. Y., Wang, L. J. 2012. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots, Angew. Chem., Int. Ed., 51 (49), 12215-12218.
- [10] Wang, F., Chen, Y. H., Liu, C. Y., Ma, D. G. 2011. White Light- Emitting Devices Based on Carbon Dots' Electroluminescence, Chem. Commun., 47 (12), 3502-3504.
- [11] Gu, N., Li, Y., Wang, M., Cao, M. 2013. Nano-opto-electronics for biomedicine. ChinSci Bull., 58 (21), 2521-2529.
- [12] Feng, X., Jiang, Y., Zhao, J., Miao, M., Cao, S., Fang, J., Shi, L. 2015. Easy synthesis of photoluminescent N-doped carbon dots from winter melon for bio-imaging, RSC Adv., 5 (40), 31250-31254.
- [13] Wu, Z. L., Zhang, P., Gao, M. X., Liu, C. F., Wang, W., Leng, F., Huang, C. Z. 2013. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins, J. Mater. Chem. B 1 (22), 2868-2873.
- [14] Xu, H., Yang, X., Li, G., Zhao, C., Liao, X., 2015. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples, J. Agric. Food Chem., 63 (30), 6707-6714.
- [15] Liu, H., Ye, T., Mao, C. 2007. Fluorescent carbon nanoparticles derived from candle soot, Angew. Chem. Int. Ed., 46 (34), 6473-6475.
- [16] Sahu, S., Behera, B., Maiti, T. K., Mohapatra, S. 2012. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chem. Commun., 48 (70), 8835-8837.
- [17] Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., Sharon M. 2014. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity, J. Drug Deliv., 2014, Article ID 282193.
- [18] Feng, J., Wang, W. J., Hai, X., Yu, Y. L. Wang, J. H., 2016. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging, J. Mater. Chem. B 4 (3), 387-393.
- [19] Xue, M., Zhan, Z., Zou, M., Zhang, L., Zhao, S. 2016. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging, New J. Chem., 40 (2), 1698-1703.
- [20] Liang, Q., Ma, W., Shi, Y., Li, Z. Yang, X. 2013. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications, Carbon, 60, 421-428.
- [21] Yang, X., Zhou, Y., Zhu, S.H., Luo, Y., Feng, Y., Dou, Y. 2014. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging, Biosensors and Bioelectronics, 60, 292-298.
- [22] Zhou, H. S., Wang, L. 2014. Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application, Anal. Chem, dx.doi.org/10.1021/ac502646x.
- [23] Zhu, C., Zhai, J., Dong, S. 2012. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun., 48 (75) , 9367-9369.
- [24] Zheng, H., Wang, Q., Long, Y., Zhang, L., Gao, M., Bai, W. 2011. Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide, Carbon, 49, 3134-3140.
- [25] Yang, Z., Li, Z., Xu, M., Ma, Y., Zhang, J., Su, Y., Gao, F., Wei, H., Zhang, L. 2013. Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Lett. 5 (4), 247-259.
- [26] Prasannan, A., Imae, T. 2013. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels, Ind. Eng. Chem. Res. 2013, 52 (44), 15673-15678.
- [27] Lim, S. Y., Shen, W., Gao, Z. 2015. Carbon quantum dots and their applications, Chem. Soc. Rev., 44 (1), 362-381.
- [28] Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri A.M., Al-Youbi A.O., Sun, X. 2012. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater., 24 (15), 2037-2041.
- [29] Biçer, K. B. 2017. Karbon Kuantum Noktaların Sentezive Fotolüminesans Özelliklerinin İncelenmesi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 41 s, Erzurum.
- [30] Melis Özge Alaş, Rükan Genç, 2016, “Floresans Karbon Nanoparçacıkların Yeşil Sentezi ve Pasivasyon Ajanının Molekül Ağırlığının Nanoparçacık Özellikleri Üzerine Etkisinin İncelenmesi”, Sinop Üniversitesi Fen Bilimleri Dergisi (Sinop Uni J Nat Sci), 1 (2), 123-134.
- [31] Bozkurt, E. 2013. Kumarin 120 Boya Bileşiğinin Ters Misellerde Moleküler Davranışının Spektroskopik Tekniklerle İncelenmesi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 118 s, Erzurum.
- [32] Terzi, P. 2013. Elektro döndürme Yöntemiyle Elde Edilen Jelatin Nanoliflerin Gıdalarda Kıvam Verici Olarak Kullanılması, İstanbul Teknik Üniversitesi, Gıda Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 143 s, İstanbul.
- [33] Hsiao Wei, T., 2009. Rhelogy And Stability of Olive Oil Cream Emulsion Stabilized by Sucrose Fatty Acid Esters Nanionic Surfactans, Malaya Kuala Lumpur Üniversitesi, Yüksek Lisans Tezi, 62s, Malezya.
[34] Yu, S. J., Kang, M. W., Chang, H. C., Chen, K. M., Yu, Y. C., 2005. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity, J. Am. Chem. Soc., 127, 17604-17605.
- [35] Aslandaş, A. M., Balcı, N., Arık, M., Şakiroğlu, H., Onganer, Y., Meral, K. 2015. Liquid nitrogen-assisted synthesis of fluorescent carbon dots from Blueberry and their performance in Fe3+ detection, Applied Surface Science, 356, 747-752.